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ABSTRACT

In this paper we introduce a probabilistic approach for op-
tical quality checking of Solder Pastes (SP) in Printed Cir-
cuit Boards (PCB). Dealing with unregistered image inputs,
the task is to address at the same time SP identification, and
detecting special soldering errors, called scooping. For this
reason we introduce a novel Hierarchical Marked Point Pro-
cess (HMPP) framework, which is able to handle the paste
and scooping extraction problems simultaneously, so that the
SPs and the included scoops have a parent-child relationship.
A global optimization process attempts to find the optimal
configuration of entities, considering the observed data, prior
knowledge, and interactions between the neighboring circuit
elements. The proposed method is evaluated on a real PCB
image set containing more than 3000 SPs and 600 scooping
artifacts

Index Terms— Marked point process, PCB, scooping

1. INTRODUCTION

Automatic optical inspection (AOI) is a crucial step in the
manufacturing process of Printed Circuit Boards (PCBs). The
quickly increasing resolution, quality and speed of the indus-
trial cameras have recently opened several new prospects in
image based verification. At finer scales a significant amount
of information is revealed, which calls for shifting from sim-
ple segmentation [1] or morphology based [2] investigations
towards a hierarchical modeling approach of the PCB struc-
ture, focusing jointly on circuit regions, individual Circuit El-
ements (CEs), CE interactions and relevant CE parts.

This paper deals with solder paste & scooping extrac-
tion, which derives from the above multiscale problem do-
main. Nowadays the most widespread assembling technol-
ogy of electronic circuit modules applies reflow soldering [3].
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Fig. 1. Solder paste u with a scoop qu (10µm res. image)

The amount of solder paste deposited affects the reliability
and strength of the reflowed solder joint [4]. Solder paste
scooping (see Fig. 1) occurs when the squeegee blade enters
into the stencil aperture and removes paste from the center of
the print. This is caused by high print pressure and can be
exaggerated by rubber blades and large stencil apertures. A
single scoop in a PCB does not cause a critical quality prob-
lem, however, if the number and summarized volume of such
artifacts surpass a given threshold, the board should be with-
drawn. Since the PCBs are moving continuously on conveyor
belt, the optical verifying system must deal with unregistered
image inputs. As well, due to lens aberrations, the local con-
trast of the image is usually inhomogeneous, and we may ob-
serve regions that exhibit defocus blur. This effects results in
varying sharpness of the scoops, therefore instead of devel-
oping global appearance models, the scoops should be rather
described locally with respect to their covering solder pastes.

Several previous AOI methods use mathematical mor-
phology [2, 5] for investigating geometric structures in binary
images. Usually a series of morphological transformations is
applied such as erosions, geodesic dilations, reconstruction
by dilation, anchored skeletonisation, etc. The main weak
point of the these techniques is that they critically rely on
the input binarization step performed by thresholding the
grayscale input. However, estimating appropriate global or
local thresholds may be difficult, as well as due to contrast
defects and slight illumination variations, the separation of
CEs from the background can be imperfect [5].

In the recent years, Marked Point Processes (MPP) [6,
7, 8] have become popular in 2D and 3D object detection,
since they can efficiently model a population of an unknown
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number of entities, and consider the geometry of the objects.
However, conventional MPP models do not handle object hi-
erarchy, thus they are inappropriate to model complex multi-
level scenarios. Stepping forward, we describe here the hier-
archy between solder paste objects and internal scoops as a
parent-child relationship embedded into a novel Hierarchical
MPP (HMPP) framework. The appearance of a child object
is affected by its parent entity, considering geometrical and
spectral constraints, such us a parent object contains the child,
or the contrast within the parent object influences the intensity
characteristic of the child entity. Besides, prior knowledge is
exploited in interaction modeling between different objects.

2. PROBLEM DEFINITION

The input of the proposed framework is an image taken from
a PCB, having a 2D pixel lattice S. The goal is to extract and
separate the Solder Pastes (SP) in the PCBs, meanwhile to de-
tect and describe the Scoop Objects (SO) appearing in some
of the pastes (Fig. 1). We model a SP by an ellipse; and a
SO by two concentric ellipses as it consists of a bright central
region (inside the internal ellipse) and a relatively darker el-
liptical ring (region between the internal and external ellipses)
enclosed by the brighter SP patch (Fig. 1). In practise, noisy
samples may make the recognition challenging (Fig. 5).

A given SP ellipse, denoted by u, is described by five geo-
metric parameters: x and y center coordinates in the S lattice,
semimajor resp. semiminor axes, and the orientation angle. In
addition, u may contain a SO, qu, which is determined by its
center pixel, semi-axes of the internal and external ellipses,
respectively, and the scoop orientation. We consider in the
following qu as a child object assigned to each u, and denote
by qu = nil if paste u contains no scoop.

3. HIERARCHICAL MARKED POINT PROCESS
MODEL

We model the PCB image as composition of an arbitrary num-
ber of SPs whose positions and geometric parameters are re-
alizations of a MPP [6]. As a novelty of our approach, the
scoops realize an embedded MPP within the SPs. Let us de-
note by Ω the space of all configurations of a finite number
of SP objects. We will refer to a given object configuration in
Ω by ω, where ω = ∅ or ω = {u1, . . . , un} for an arbitrary
positive integer n. We also define a neighborhood relation in
the SP object space: u ∼ v if their ellipses intersect.

Next, we introduce a Φ(ω) energy function on the Ω con-
figuration space, so that we aim to fulfill that the optimal con-
figuration exhibits the minimal energy. The energy function
takes into account the interactions between the geometric ob-
jects (the prior energy Φp(ω)), and the way they fit to the
optical data (the data energy Φd(ω)):

Φ(ω) = Φp(ω) + Φd(ω)

(a) Intersection area at parent level

(b) Scoops overhanging area w.r.t the parent SP object

Fig. 2. Calculation of the prior terms

We begin with the Φp(ω) energy part, which prescribes
prior geometric constraints in the model. Since we aim to
extract individual SP entities, we must penalize overlapping
between different SP ellipses. Thus, the energy term of
parent-level interactions penalizes object pairs according to
the φi

p(u, v) normalized overlapping area as shown in Fig.
2(a). On the other hand, we should also penalize if a scoop qu
overhang its parent paste u: this is measured by the φc

p(u, qu)
overhanging area normalized by the area of the scoop (see
Fig. 2(b)). By definition, we use φc

p(u, nil) = 0. Finally, the
complete prior energy term of the population is calculated as:

Φp(ω) =
∑

u,v∈ω
u∼v

φi
p(u, v) +

∑
u∈ω

φc
p(u, qu)

The data energy associated with object u is decomposed
into a parent term φp

d(u) and a child term φc
d(u, qu). In the

PCB images the parent SPs can be modeled as bright el-
lipses surrounded by darker background. To evaluate the con-
trast between the pastes and the board, we calculate the Bhat-
tacharya [6] distance dB(u) between the pixel intensity dis-
tributions of the internal SP regions and their boundaries:

dB(u) = 1−
∫ √

λin
u (x) · λout

u (x)dx

where λin
u (x) (resp. λout

u (x)) is the empirical gray level dis-
tribution of the pixels belonging to u (resp. a concentric el-
liptical ring around u), as shown in Fig. 3. The data energy
φp
d(u) associated with the parent object u is then given by:

φp
d(u) = Q(dB(u), d0) =

=


(
1− dB(u)

d0

)
if dB(u) < d0

exp
(
−dB(u)−d0

0.1

)
− 1 if dB(u) ≥ d0

Author manuscript, published in IEEE International Conference on Image Processing (ICIP), pp. 2121 - 2124, Brussels, Belgium, 2011

Document version of the MTA SZTAKI Publication Repository, http://eprints.sztaki.hu/



Fig. 3. Utility of the λin
u (x) and λin

u (x) histograms for the
parent data term calculation

Fig. 4. Child data term calculation

where d0 is the object-acceptance threshold set by a Max-
imum Likelihood (ML) parameter estimation process based
on training regions [7].

The construction of the child’s data term φc
d(u, qu) is

based on similar principles. We use φc
d(u,nil) = 0, other-

wise we distinguish three regions of each scoop: the central
bright ellipse, the darker median ring and the bright external
ring, as shown in Fig. 4. Experimental evidences prove, that
for a real scoop q, the gray level histogram of the central re-
gion, λc

q(x) follows a skewed distribution, while the medium
and external region histograms (λm

q (x) resp. λe
q(x)) can be

approximated by Gaussian densities. Let us denote by µc
q , µm

q

resp. µe
q the peak locations of the smoothed λc

q(x), λ
m
q (x)

resp. λe
q(x) functions. We prescribe three constraints for an

efficient scoop candidate: (i) it exhibits high µc
q value, and

intensity ratios (ii) µc
qu/µ

m
qu resp. (iii) µe

qu/µ
m
qu pass given

contrast thresholds dcm and dem, which are set by ML train-
ing. To enforce the simultaneous fulfilment of the (i)-(iii)
properties, the child’s data-energy value is calculated using
the maximum operator (logical AND) from the subterms of
the three constraints:

φc
d(u, qu) = max

(
Q(µc

qu , d
c),

Q(µc
qu/µ

m
qu , d

cm),

Q(µe
qu/µ

m
qu , d

em)
)

(1)

Finally, the data energy of the configuration is obtained as

Φd(ω) =
∑
u∈ω

φp
d(u) + φc

d(u, qu)

4. OPTIMIZATION

For the estimation of the optimal object configuration ω̂ =
argminω∈Ω (Φp(ω) + Φd(ω)) we have developed a hierar-
chical extension of the recent Multiple Birth and Death Al-
gorithm [6]. The steps are as follows:

Initialization: start with an empty population ω = ∅.
Main program: initialize the inverse temperature parame-

ter β = β0 and the discretization step δ = δ0 and a constant
basic birth frequency b0. Alternate the following four steps,
till convergence is reached:

1) Parent Birth step: Visit all pixels of the S lattice one
after the other. At each pixel s ∈ S call SP Generation pro-
cedure with probability δ · b0, so that create a new SP object
u with center s; set u’s axis length and orientation parameters
randomly following prior size distributions; use null-scoop
initially: qu = nil and add u to the current configuration ω.

2) Parent Death step: Consider the current configuration
ω and create a list of the u ∈ ω objects sorted from the highest
to the lowest φp

d(u) values. For each object u taken in this
order, compute the cost of deleting u from ω w.r.t. the global
configuration energy:

∆Φu
ω = Φ(ω/{u})− Φ(ω) =

= −φp
d(u)− φc

d(u, qu)− φc
p(u, qu)−

∑
v∈ω
v∼u

φi
p(u, v)

Next, we derive the pd(u) death rate as follows:

pd(u) = f (∆Φu
ω) =

δ · exp (−β ·∆Φu
ω)

1 + δ · exp (−β ·∆Φu
ω)

(2)

Finally, we remove u from ω with a probability pd(u).
3) Child Maintenance step: for each u object in ω, we

generate a new scoop candidate q′u which is either q′u = nil;
or we pick up a random point covered by the ellipse of u,
and appoint it as the center of q′u, while orientation and axes
parameters of q′u are set randomly. Thereafter, we calculate
the energy cost of exchanging qu to q′u:

∆φ(u, qu, q
′
u) = φc

p(u, q
′
u)+φc

d(u, q
′
u)−(φc

d(u, qu)+φc
p(u, qu))

The scoop exchange likelihood is calculated using the f(.)

function defined by (2): pc(u) = f
(
∆φ(u, qu, q

′
u)
)

. Then
with a probability pc(u), we replace qu with q′u.

4) Convergence test: if the process has not converged
yet, increase the inverse temperature β and decrease the dis-
cretization step δ with a geometric scheme, and go back to the
Parent Birth step. The convergence is obtained when all the
SP objects added during the birth step, and only these ones,
have been killed during the death step, meanwhile the Child
Maintenance does not report any more changes.
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(a) (b)

(c) (d)

Fig. 5. Two image parts and the results

Table 1. Quantitative evaluation results of the joint solder
paste & scoop extraction with the proposed model. The used
PCB test set contains 3040 SP entities and 613 SOs.

SP level SO level
Method Rc Pc Rc Pc FM

Morph 98.6% 100% 78.8% 65.2% 71.4%
HMPP 99.5% 99.9% 90.7% 91.6% 91.1%

5. EVALUATION

We have tested our method on a real PCB image set which
consists of 10µm resolution photos of 40 different circuits,
each of them contains 76 SPs. In aggregate 613 SOs are
present in the 3040(=40·76) solder pastes of the test set. The
quality of the different PCBs shows a large variety: 18 out
of the 40 analysed images contain less than 10 scoops/board,
14 circuits include 10-30 scoops, and each of the remaining
8 ones holds more than 30 SOs. Meanwhile, the test images
exhibit significantly different and spatially varying contrast
due to the quick motion of the production line and the optical
limitations of the industrial cameras.

Some qualitative results of the hierarchical SP-SO extrac-
tion are shown in Fig. 5. We have fulfilled the quantitative
evaluation at entity level: we have calculated the Recall (Rc)
and Precision (Pc.) rates of the SP and SO detection respec-
tively, results can be observed in Table 1. Minor errors of
SP detection are caused by notably blurred image regions and
noise patches in some of the images. The challenging part of
the process proved to be the scoop identification, however, the
detection results are here above 90% as well. We also provide
the F-measure (FM in Table 1) [7] of the detection, which is

the harmonic mean of precision and recall. In Fig. 5, we can
observe in each image one false negative scoop, which is re-
sulted by the strongly overlapping gray level histograms of
the median and external rings. This is currently a limitation
of the method.

As a reference, we have implemented a morphology based
approach from similar processing steps to [2], and compared
the performance in the test image set. Results in Table 1 show
the superiority of the proposed model over the morphology
based technique. Circuit technologists have confirmed, that
based on our reported accuracy a fair statistical analysis of the
scooping effects can be performed for quality characterization
of the PCBs.

6. CONCLUSION

We have proposed a Hierarchical Marked Point Process
(HMPP) framework for optical scooping analysis in circuit
boards. The method incorporates entitiy detection and qual-
ity validation in a joint probabilistic approach. The author
would like to thank László Jakab and Olivér Krammer for
provision of the input images and for their kind remarks and
advice regarding the technical aspects of the problem and
task definition.
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