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Abstract

In this paper we introduce a probabilistic approach for optical quality checking of Solder Pastes (SP) in Printed Circuit Boards (PCB). Dealing
with unregistered image inputs, our task is to address at the same time SP identification, and detection of special soldering errors, called
scooping. For this reason we introduce a novel Hierarchical Marked Point Process (HMPP) framework, which is able to handle the paste and
scooping extraction problems simultaneously, so that the SPs and included scoops have a parent-child relationship. A global optimization process
attempts to find the optimal configuration of entities, considering the observed data, prior knowledge, and interactions between the neighboring
circuit elements. The proposed method is evaluated on a real PCB image set containing more than 3000 SPs and 600 scooping artifacts. A
morphology-based baseline method is also introduced for the problem and used as reference for qualitative and quantitative comparison against
the proposed model.

Key words: Marked point process, PCB, scooping

1. Introduction

Automatic optical inspection (AOI) is a crucial step in the
manufacturing process of Printed Circuit Boards (PCBs). The
quickly increasing resolution, quality and speed of industrial
cameras have recently opened several new prospects in image-
based verification. At finer scales a significant amount of infor-
mation is revealed, which calls for shifting from simple segmen-
tation (Comaniciu et al., 2002) or morphology-based (Soille
and Vogt, 2009) investigations towards a hierarchical modeling
approach of the PCB structure, focusing jointly on circuit re-
gions, individual Circuit Elements (CEs), CE interactions and
relevant CE parts.

This paper deals with the detection of a PCB printing de-
fect, which derives also from a multiscale problem domain.
Nowadays the most widespread assembling technology of elec-
tronic circuit modules applies reflow soldering (Krammer and
Sinkovics, 2010). The amount of solder paste deposited affects
the reliability and strength of the reflowed solder joint (Mannan
et al., 1993). Solder paste scooping (see Fig. 1) occurs when
the squeegee blade enters into the stencil aperture and removes
paste from the center of the print. This is caused by high print
pressure and can be exaggerated by rubber blades and large
stencil apertures. A single scoop in a PCB does not cause a
critical quality problem, however, if the number and summa-

Fig. 1. Solder paste u with a scoop qu (10µm res. image)

rized volume of such artifacts surpass a given threshold, the
board should be withdrawn. Since in optical verifying systems
PCBs are continuously moving on conveyor belts, the recog-
nition algorithm must deal with unregistered image inputs and
the circuit elements should be first located. Thus, the problem
is hierarchical in the sense that we have to extract the solder
pastes of the board and detect the included scoop within each
imperfect paste simultaneously.

Several previous AOI methods use mathematical morphol-
ogy (Ionut, 2008; Soille and Vogt, 2009; Lin et al., 2009) for
investigating geometric structures in binary images. Usually a
series of morphological transformations is applied such as ero-
sions, geodesic dilations, reconstruction by dilation, anchored
skeletonisation, etc. The main weak point of these techniques is
that they critically rely on the input binarization step performed
by thresholding the grayscale input. However, estimating ap-
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Fig. 2. Demonstration of Sauvola’s locally adaptive thresholding algorithm
(Sauvola and Pietikäinen, 2000) with different parameter settings

propriate global or local thresholds may be difficult, as well as,
due to contrast defects and slight illumination variations, the
separation of CEs from the background can be imperfect (Li
et al., 2010). Even with applying efficient locally adaptive algo-
rithms (Sauvola and Pietikäinen, 2000), fine structures within
the CEs such as scooping are often hard to describe from a
binarized image (see Fig. 2).

The quality control task is often interpreted as a change
detection problem, comparing the examined PCB to a fault-
less reference board (Tsai and Lin, 2003; Tsai et al., 2003)
or match the CEs to template entities (Tsai and Yang, 2005).
However, in the addressed circuit images, even the perfect sol-
der pastes are highly inhomogeneous, and contain irregularly
distributed lighter and darker regions. This phenomenon may
make the comparison of pixel intensities or textures of the ex-
tracted pastes misleading. Meanwhile, the scoops exhibit vari-
ous size, orientation and contrast parameters (see Fig. 10-12),
which can corrupt template matching approaches.

Recently, Marked Point Processes (MPP) (Descombes and
Zerubia, 2002; Descombes et al., 2009) have become popular in
2D and 3D pattern recognition, since they can efficiently model
a population of an unknown number of entities and consider
the geometry of objects. Following the inverse modeling ap-
proach, a fitness function is defined on the space of the possible
object configurations, and an optimization process attempts to
find the configuration with the highest confidence. To keep the
computational the complexity tractable, stochastic optimization
techniques are usually adopted, which consist of object gener-
ation (birth), removal (death) and perturbation steps. In such
models, validation of objects proposed by the birth process is a
key point, as it is used to decide if a candidate should be kept,
deleted or modified.

Although conventional MPP models are well established
tools in various pattern recognition application areas, they do
not handle object hierarchy, thus they are inappropriate to model
complex multi-level scenarios. Stepping forward, we describe

Fig. 3. Utility of the λin
u (x) and λin

u (x) histograms for the parent data term
calculation

here the hierarchy between solder paste objects and internal
scoops as a parent-child relationship embedded into a novel Hi-
erarchical MPP (HMPP) framework. The appearance of a child
object is affected by its parent entity, considering geometrical
and spectral constraints, such us a parent object contains the
child, or the contrast within the parent object influences the in-
tensity characteristic of the child entity. Besides, prior knowl-
edge is exploited in modeling the interaction between different
objects.

2. Problem definition

The input of the proposed framework is an image taken from
a PCB, having a 2D pixel lattice S. The goal is to extract and
separate the Solder Pastes (SP) in the PCBs, while detecting
and describing the Scoop Objects (SO) appearing in some of
the pastes (Fig. 1). We model a SP by an ellipse; and a SO by
two concentric ellipses, as it consists of a bright central region
(inside the internal ellipse) and a relatively darker elliptical ring
(region between the internal and external ellipses) enclosed by
the brighter SP patch (Fig. 1).

A given SP ellipse, denoted by u, is described by five geo-
metric parameters: x and y center coordinates in the S lattice,
semimajor resp. semiminor axes, and the orientation angle. In
addition, u may contain a SO, qu, which is determined by its
center pixel, semi-axes of the internal and external ellipses, re-
spectively, and the scoop orientation. We consider in the fol-
lowing qu as a child object assigned to each u, and denote by
qu = nil if paste u contains no scoop. We denote by H the set
of all the possible (u, qu) parent-child object structures.

3. Feature selection

In this section we introduce image based features which can
characterize the SP and SO candidates. Based on the extracted
descriptors, we define an energy function φd(u) : H → [−1, 1],
which evaluates an object hypothesis considering local im-
age data, but disregarding other detected objects on the board.
φd(u) is interpreted as a negative fitness value of an arbitrary
(u, qu) pair. By definition, a SP with φd(u) < 0 is called an
attractive object, and we aim to construct the φd(u) function
so that attractive objects correspond to the true circuit entities.

The data term φd(u) is decomposed into a parent term φp
d(u)

and a child term φc
d(u, qu). In the PCB images the parent SPs

can be modeled as bright ellipses surrounded by darker back-
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Fig. 4. Plot of the Q(x, d0) function

Fig. 5. Child data term calculation

ground. To evaluate the contrast between the pastes and the
board, we calculate the Bhattacharya (Descombes et al., 2009)
distance dB(u) between the pixel intensity distributions of the
internal SP regions and their boundaries:

dB(u) = 1−
∫ √

λin
u (x) · λout

u (x)dx

where λin
u (x) (resp. λout

u (x)) is the empirical gray level dis-
tribution of pixels belonging to u (resp. a concentric elliptical
ring around u), as shown in Fig. 3.

In the next step, we construct the parent energy subterm
φp
d(u), so that we attempt to satisfy φp

d(u) < 0 for real ob-
jects and φp

d(u) ≥ 0 for false candidates. For this purpose,
we project the dB(u) feature domain with a monotonously de-
creasing function (see also Fig. 4):

φp
d(u) = Q(dB(u), d0) =

=


(
1− dB(u)

d0

)
if dB(u) < d0

exp

(
−dB(u)− d0

0.1

)
− 1 if dB(u) ≥ d0

(1)

where d0 is the object-acceptance threshold.
The construction of the child’s data term φc

d(u, qu) is based
on similar principles. We use φc

d(u,nil) = 0, otherwise we dis-
tinguish three regions of each scoop: the central bright ellipse,
the darker median ring and the bright external ring, as shown
in Fig. 5. Experimental evidence proves that for a real scoop q,
the gray level histogram of the central region, λc

q(x) follows a
skewed distribution, while the medium and external region his-
tograms (λm

q (x) resp. λe
q(x)) can be approximated by Gaussian

densities. Let us denote by µc
q the peak location of λc

q(x), and
by µm

q resp. µe
q the empirical mean values of the λm

q (x) resp.
λe
q(x) distributions.
We characterize a scoop candidate by the following three

features:
(i) µc

q: brightness of the central region

(a) Intersection area at parent level

(b) Scoops overhanging area w.r.t the parent SP object

Fig. 6. Calculation of the prior terms

(ii) intensity ratio µc
qu/µ

m
qu : contrast between the central re-

gion and median ring
(iii) intensity ratio µe

qu/µ
m
qu : contrast between the external

ring and median ring
We assign to each feature an energy term using the Q-

function similarly to (1).
To enforce the simultaneous appropriateness of the (i)-(iii)

features, the child’s data-energy value is calculated using the
maximum operator (logical AND in the negative fitness do-
main) from the subterms of the three constraints:

φc
d(u, qu) = max

(
Q(µc

qu , d
c),

Q(µc
qu/µ

m
qu , d

cm),

Q(µe
qu/µ

m
qu , d

em)
)

(2)

Free parameters of the scoop intensity model are dc, dcm and
dem, which have been set based on manually evaluated training
data. Maximum Likelihood Estimators (MLE) can optimize the
parameter values as detailed in (Chatelain et al., 2009).

On the other hand, the width of object boundaries for calcu-
lating the dB(u) and λe

q(.) features are determined using prior
size information about the expected entities.

Finally, the complete data term of the SP candidate u is
obtained as

φd(u) = φp
d(u) + φc

d(u, qu)

4. Hierarchical Marked Point Process Model

After investigating independent circuit elements (Sec. 3), we
characterize complete object configurations in this section. We
model the PCB image as composition of an arbitrary number of
SPs whose positions and geometric parameters are realizations
of a MPP (Descombes and Zerubia, 2002). As a novelty of
our approach, the scoops realize an embedded MPP within the
SPs. Let us denote by Ω the space of all configurations of a
finite number of SP objects. We will refer to a given object
configuration in Ω by ω, where ω = ∅ or ω = {u1, . . . , un} for
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Fig. 7. Demonstration of the Hierarchical MBD optimization algorithm. Comparing the populations after the kth and k+1th iterations in the example images,
we can observe that the applied Parent Birth-Death step pair recognized two new SP objects, while the Child Maintenance process detected their corresponding
scoops and also perturbated three already existing SOs.

an arbitrary positive integer n. We also define a neighborhood
relation in the SP object space, u ∼ v if their ellipses intersect.

Next, we introduce a Φ(ω) energy function on the Ω con-
figuration space, so that we aim to fulfill that efficient config-
urations exhibit relatively lower energies. The energy function
takes into account the way the entities fit to the optical data
(the data energy Φd(ω)) and geometric interactions between
contacting objects (the prior energy Φp(ω)):

Φ(ω) = κ · Φd(ω) + Φp(ω) (3)

where κ is a positive weighting factor between the two energy
parts, we used a constant κ = 2.

Based on the φd(u) object-energy values defined in Sec. 3,
the data term of the configuration is derived as:

Φd(ω) =
∑
u∈ω

φd(u)

We continue the description with the Φp(ω) energy part,
which prescribes prior geometric constraints in the model.

Since we aim to extract individual SP entities, we must pe-
nalize overlapping between different SP ellipses. Thus, the en-
ergy term of parent-level interactions penalizes object pairs ac-
cording to the φi

p(u, v) normalized overlapping area as shown
in Fig. 6(a).

On the other hand, we should also penalize if a scoop qu
overhangs its parent paste u: this is measured by the φc

p(u, qu)
overhanging area normalized by the area of the scoop (see Fig.
6(b)). By definition, we use φc

p(u,nil) = 0.
The prior energy of the population is calculated as the sum of

the overlapping and overhanging energy terms over all objects
and object pairs:

Φp(ω) =
∑

u,v∈ω
u∼v

φi
p(u, v) +

∑
u∈ω

φc
p(u, qu)

As the energy function Φ(ω) is completely defined, the op-
timal SP population ω̂ is obtained as the Maximum Likelihood
(ML) configuration estimate:

ω̂ = argmin
ω∈Ω

Φ(ω). (4)

5. Optimization and computational requirements

For the estimation of the optimal object configuration (4) we
have developed a hierarchical extension of the recent Multiple
Birth and Death (MBD) method (Descombes et al., 2009). The
flowchart of the relaxation algorithm is demonstrated in Fig. 7,
and the steps of the process are detailed in Fig. 8.

As the optimization method is stochastic, the objects are gen-
erated in the birth step with random size parameters (major
resp. minor axes of SP and SO ellipses), following size distri-
butions estimated from sample objects. In case of different CE
types present on the board (see Fig. 11), the prior distributions
are multimodal: we use a Mixture of Gaussians approximation
of the empirical size histograms for this purpose. Regarding the
relaxation parameters, we followed the guidelines provided in
(Descombes et al., 2009) and used δ0 = 10000, β0 = 20 and
geometric cooling factors 1/0.96.

An important issue is to address the computational cost of the
algorithm in terms of industrial requirements. We performed
our tests on a standard desktop computer, where processing
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Algorithm: Hierarchical MBD optimization

Step 1: Initialization
(a) Start with an empty population (ω = ∅).
(b) Set initial Simulated Annealing parameters inverse temperature β = β0 and discretization step δ = δ0.
(c) Let b0 be a basic birth frequency.

Step 2: Parent Birth
For each pixel s of lattice S call the following SP Generation procedure with a probability δ · b0:

(i) Create a new SP object u with center s.
(ii) Set u’s axis length parameters randomly following prior size distributions, and a random orientation.

(iii) Use null-scoop initially: qu = nil.
(iv) Add u to the current configuration ω.

Step 3: Parent Death
Consider the current configuration ω:
(a) Create a list of the u ∈ ω objects sorted from the highest to the lowest φp

d
(u) values.

(b) For each object u taken in this order, compute the cost of deleting u from ω w.r.t. the global configuration energy:

∆Φu
ω = Φ(ω/{u})− Φ(ω)

(c) Derive the pd(u) death rate as follows:

pd(u) = f (∆Φu
ω) =

δ · exp (−β ·∆Φu
ω)

1 + δ · exp (−β ·∆Φu
ω)

(5)

(d) Remove u from ω with a probability pd(u).
Step 4: Child Maintenance

For each u object in ω:
(a) Generate a new scoop candidate q′u which is either q′u = nil; or we pick up a random point covered by the ellipse

of u, and appoint it as the center of q′u, while orientation and axes parameters of q′u are set randomly.
(b) Calculate the energy cost of exchanging qu to q′u as follows:

∆φ(u, qu, q
′
u) = φc

p(u, q
′
u) + φc

d(u, q
′
u)−

(
φc
d(u, qu) + φc

p(u, qu)
)

(c) Calculate the scoop exchange likelihood using the f(.) function defined by (5):

pc(u) = f

(
∆φ(u, qu, q

′
u)

)
(d) Replace qu with q′u with a probability pc(u).

Step 5: Convergence Test
If the process has not converged yet, increase the inverse temperature β and decrease the discretization step δ with a geometric
scheme, and GOTO Step 2., otherwise STOP. The convergence is obtained when all the SP objects added during the birth
step, and only these ones, have been killed during the death step, meanwhile the Child Maintenance does not report any more
changes.

Fig. 8. Pseudo code of the developed Hierarchical Multiple Birth and Death optimization algorithm

1MP input images with 76 SP entities took around 10-20 sec.
Apart from further source code optimization, there are sev-
eral options to accelerate the method from algorithmic points
of view. Firstly, similarly to other graph-like model structures
(such as Markov Random Fields (Szirányi et al., 2000)), MPP
optimization algorithms can be parallelized and adopted for
multiprocessor architectures (Bambos and Chen, 1994). Sec-
ondly, in case of input images with sufficiently high Signal to
Noise Ratio (SNR), the convergence of the MBD relaxation
process can be significantly sped up with using so called “birth
maps” as shown in (Descombes et al., 2009).

Another real-life application constraint is that the industrial
implementation of the method should have a deterministic pro-
cessing speed. Experimental studies confirm that the MBD al-
gorithm with constant geometric cooling schedule shows a well
predictable convergence, and the required number of iterations

can be estimated a priori. Thus practically the process can be
stopped after a fixed number of steps, without considerable
degradation of the output quality.

On the other hand, our test data providers confirmed that
with their current technology, the stencil printing process takes
around 15 second for a four-piece batch of PCBs. This means
that even with the hardware-software configuration used in our
tests, we can nearly meet the real time verification requirement
if we set four simultaneously working processing units.

6. Further circuit error investigations using the HMPP
method

Although the proposed method has been developed for the
scooping detection task, various artifacts may also be investi-
gated in a similar way using the introduced HMPP model. For
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Fig. 9. Short circuit detection: demonstration of the consecutive steps of the connecting SP extraction algorithm. Local threshold for binarization is estimated
based on the output of the HMPP detector. Thereafter, based on the locally binarized mask and the obtained SP ellipses, connecting elements can be detected
by morphological operations.

example, critical PCB errors are the short circuits caused by
thin lines connecting the neighboring SPs. To deal with this
problem, our model can be extended in a straightforward way
(Ortner et al., 2008): we can use in parallel line segment ob-
jects to detect the short circuit connections and ellipses model-
ing the SPs. For the line segments, similar data and interaction
terms can be constructed to the cases of the SPs. The output
entity configuration, which consists of an unknown number of
ellipses and line segments, can be obtained with an analogous
optimization process.

As well, with a few postprocessing operations, we can detect
if neighboring SPs touch each other as in Fig. 9 and 11(a). The
proposed steps are as follows:
– For each neighboring SP-pair detected by HMPP (see Fig.

9(b)), we calculate the intensity histograms of the paste re-
gions (ie. inside the ellipses) and the background regions (ie.
around the two ellipses) as shown in Fig. 9(c).

– Based on these local measurements, we separate the paste
and board areas by thresholding the image part with the mean
of the two filtered histogram peaks (Fig. 9(c)-(d)).

– In the considered binary mask we check with morphological
operators if the two SP blobs are connected, so that we start a
floodfill propagation from the center of first SP and measure
if the resulting floodfill mask covers the estimated region of
the second SP ellipse with more than 80% (Fig. 9(e)).
Result of touching element detection is also demonstrated in

Fig. 11(e). We can observe that the connecting CEs are correctly
separated by the proposed HMPP model, but the short circuit
errors are detected at the same time.

7. Reference method

Although the same automated scoop extraction task has not
been addressed in the literature of pattern recognition yet, it is
relevant to compare the performance of the proposed HMPP
model to more conventional approaches. As noted in the intro-
duction, most previous template-free AOI methods were based
on morphological investigations (Ionut, 2008; Soille and Vogt,
2009; Lin et al., 2009). Therefore, based on tools used in the
earlier techniques, we have also developed a morphology-based
solution (Morph) and used it as a baseline against our model.

The Morph technique exploits that in general SPs can be
identified as relatively light but non-homogeneous blobs in the
boards, meanwhile scoop seeds correspond to the lightest com-
pact parts of the SPs, surrounded by a darker ring. Therefore
two thresholding operations are applied on the input image: the
first one uses a lower threshold value τl, and results in the bi-
nary SP candidate mask ΓSP. The second threshold τh enables
us to extract the lightest image parts only, so that we attempt
to realize that in a second mask binary image, ΓSO, the white
regions correspond to the scoop center areas. Since light SP
parts also occur independently of scooping, a verification pro-
cess is needed, which aims to remove false SO candidates. This
post-processing step must also ensure that each SP contains one
scoop at most, which is a consequence of the manufacturing
process.

By testing different threshold configurations for the scoop
extraction step, we concluded the following:
– Separation of the central region from the median ring proved

to be often reasonable with an appropriate threshold, how-
ever, several false candidates also appeared (see Fig. 10(f))

– Separation of the median ring and the external region failed
with thresholding techniques, because the intensity domains
were significantly overlapping.
Therefore, instead of the three-region scoop model of HMPP

(Fig. 5), we characterized a SO in the Morph method by a
two-region model which consists of the center-ellipse and its
neighborhood.

In details, the Morph method contains the following main
steps, which are also demonstrated in Fig. 10:

SP separation and detection:
1 Calculate τl by Otsu’s automated threshold estimation

method (Otsu, 1979)
2 Obtain the SP candidate mask ΓSP by thresholding the

input image with τl (see Fig. 10(b))
3 Identify and separate SPs by Connected Component

Analysis (CCA1) on ΓSP (Fig. 10(c))
4 Estimate the shape of each extracted SP by fitting an

ellipse to the binary mask of the paste (Fig. 10(d))
SO detection
5 Calculate τh as the 90% of the maximal gray level value
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Fig. 10. Reference method: demonstration of the consecutive steps of the Morph algorithm

in the image 1

6 Obtain SO center candidate mask ΓSO by thresholding
the input image with τh (Fig. 10(f)). Denote by γSO(s) ∈
{0, 1} the class value of pixel s in ΓSO, where 1 corre-
sponds to the white regions.

7 Within each SP ellipse u detected in Step 4, select the
appropriately sized blobs of ΓSO, which may correspond
to SP center regions (CCA2), and approximate them with
ellipses: b1(u), . . . bku(u) (Fig. 10(g)). Denote by s ∈
bi(u) if pixel s corresponds to the scoop candidate bi(u).

8 Compute a fitness value for each bi(u) i = 1 . . . ku, ∀u,
so that we prescribe for a relevant scoop candidate that the
SO seed ellipse should consist of “white” pixels in ΓSO

in majority, while the neighborhood of the seed should
be “black”:
– Calculate an internal filling factor fint as:

fint(u, i) =
#{s : s ∈ bi(u), γSO(s) = 1}

#{s : s ∈ bi(u)}

– Denote by b̂i(u) a 4 pixel wide elliptical ring around
bi(u), and calculate an external filling factor fext as:

fext(u, i) =
#{s : s ∈ b̂i(u), γSO(s) = 0}

#{s : s ∈ b̂i(u)}

– Finally, derive the fitness value of the scoop candidate
bi(u) as the average of the internal and external factors:

f(u, i) = (fint(u, i) + fext(u, i))/2

9 Find to each SP ellipse u the index of its most likely
scoop-candidate imax(u) ∈ {1, . . . , ku}:

imax(u) = argmax
i

f(u, i)

10 If the f(u, imax) fitness value surpasses an acceptance
threshold, assign a SO to u with seed ellipse bimax(u)
(Fig. 10(h)). Otherwise use nil scoop for u.

1 At this step, we have also tested the slower locally adaptive thresholding
procedure, but due to the large number of oversaturated regions in the test
images, we could not obtain considerable improvement by that modification.

Note that the Morph method has a few free parameters, such
as size range for SP resp. SO centers, and the SO acceptance
threshold. We optimized these parameter in our test manually
based on training samples, since we were primarily interested in
the fundamental limitations of the approach, and its comparison
to the proposed HMPP model.

8. Evaluation

We have tested our method on various real PCB images (see
Fig. 13). The largest available test set has been provided by
Nokia, which consists of 10µm resolution photos of 40 different
circuits, each of them contains 76 SPs. In aggregate 613 SOs
are present in the 3040(=40·76) solder pastes of the test set. The
quality of the different PCBs shows a large variety: 18 out of
the 40 analyzed images contain less than 10 scoops/board, 14
circuits include 10-30 scoops, and each of the remaining 8 ones
holds more than 30 SOs. Meanwhile, the test images exhibit
significantly different and spatially varying contrast due to the
quick motion of the production line and the optical limitations
of the industrial cameras. For comparison, both the Morph and
the proposed HMPP approaches were evaluated on the whole
Nokia data set. Images from the other considered circuits do not
contain scooping, however, the conditions for CE-background
separation are more challenging (see Fig. 13).

For accurate Ground Truth (GT) generation, we have devel-
oped an accessory program with graphical user interface, which
enables us to add SP ellipses and SO ellipse pairs (i.e. objects)
to the configuration manually, and the result appears immedi-
ately over the input image. The objects can be moved and the
parameters (position, axes and angles) can be arbitrarily pertur-
bated with pixel accuracy, using buttons and sliders. If needed,
a zooming tool helps the accurate visual validation of the drawn
objects. Thereafter, the GT objects (both for the training and
test samples) were edited by members of our department and
validated by experts of the manufacturing process.

We have experienced that the parameter estimation process
of the parent SP extraction can be efficiently automated without
manual parameter tuning, so that we apply a coarse foreground-
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(a) Input image (b) Ground Truth

(c) Morph result (d) HMPP result

(e) HMPP + short circuit detection

Fig. 11. Results in a sample image with the Morph and the proposed HMPP techniques. Errors of the Morph method can be observed both at SP and at SO
levels. In (e) we demonstrate the output of the short circuit detection algorithm applied after HMPP - connecting circuit element pairs are correctly separated
first, then detected as short circuit errors

background separation by Otsu’s thresholding method, then we
set the acceptance threshold parameter d0 based on statistical
description of the coarsely identified SP and background re-
gions. For tuning the SO intensity model we have relied on a
supervised method, where in aggregate 15 manually selected
scoops were used for training from three different PCB images
of the Nokia set, and the remaining GT samples were only uti-
lized for validating the detection results.

Some qualitative results of the hierarchical SP-SO extraction
are shown in Fig. 11, 12 and 13. We have fulfilled the quantita-
tive evaluation both for the SP and SO objects in the Nokia set.

Table 1
Quantitative evaluation results of joint solder paste & scoop extraction with
the proposed model for the Nokia set. The used test data contains 3040 SP
entities and 613 SOs.

SP level SO level

Method Rc Pc Rc Pc FM

Morph 98.6% 100% 78.8% 65.2% 71.4%

Prop. HMPP 99.5% 99.9% 90.7% 91.6% 91.1%

At both levels, we have counted the number of True Positive
(TP), False Negative (FN) and False Positive (FP) objects in
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the detection results. Thereafter, we calculated the Recall (Rc)
and Precision (Pc) rates as:

Rc =
TP

TP + FN
Pc =

TP

TP + FP

Finally, the detection was characterized by the F-measure
(FM), which combines Recall and Precision in a single effi-
ciency measure (Rijsbergen, 1979), by computing the harmonic
mean of Rc and Pr:

FM =
2 · Rc · Pc
Rc + Pc

Numerical evaluation results are shown in Table 1. At SP
level the detection was nearly perfect, minor errors are caused
by notably blurred image regions and noisy patches in some of
the images, where the proposed approach proved to be more
robust than the Morph model (see also Fig. 11).

At SO level, differences between the two methods are sig-
nificant, as the proposed HMPP model outperforms the Morph
technique by nearly 20% regarding the FM rate. The main weak
point of Morph proved to be the high false detection rate (see Pc
values). This failure parameter can be decreased by adopting a
more strict verification step, however, we observed that such a
modification results in a drastic decrease of the Recall rate too.
On the other hand, circuit technologists have confirmed that,
based on our reported accuracy with the HMPP model, a fair
statistical analysis of the scooping effects can be performed for
quality characterization of the PCBs.

9. Conclusion

We have proposed a novel Hierarchical Marked Point Pro-
cess (HMPP) framework adopted to optical scooping analysis
in PCBs. The method incorporates Solder Paste extraction and
Scooping error detection in a joint probabilistic approach. To
demonstrate the limitations of previous PCB checking methods
concerning the selected task, we have developed a reference
technique, called Morph, from a sequence of conventional bi-
nary morphological operations. We have performed a detailed
quantitative and qualitative comparative evaluation between the
Morph and the HMPP models in a real high resolution PCB
image set. Experiments confirmed the superiority of the pro-
posed HMPP model and its usability for forthcoming industrial
inspection systems.
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Sauvola, J. and Pietikäinen, M. (2000). Adaptive document image binarization.
Pattern Recognition, 33:225–236.

Soille, P. and Vogt, P. (2009). Morphological segmentation of binary patterns.
Pattern Recogn. Lett., 30(4):456–459.
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(a) Input PCB image (b) Ground Truth

(c) Morph results: 2 merged SPs, 7 missing 10 false/falsely aligned SOs, (d) HMPP results: 3 missing SOs

Fig. 12. Comparison of the detection results of the Morph and the proposed HMPP methods to the Ground Truth. F resp. M denote False resp. Missing
scoops, MSP refers to an erroneously merged SP pair with the Morph technique.
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(a) BGA package (b) Detection result (c) QFP package (d) Detection result

(e) Nokia PCB data (f) Detection result

Fig. 13. SP detection results in different circuits
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