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2Distributed Events Analysis Reseach Group
Computer and Automation Research Institute

H-1111, Kende utca 13-17, Budapest, Hungary
email: {bcsaba,sziranyi}@sztaki.hu

ABSTRACT
In this paper we introduce a novel method for building
localization and 2D outline extraction in remotely sensed
images. A robust Marked Point Process (MPP) model at-
tempts to detect and separate the individual building seg-
ments and gives a rough rectangular estimation about the
geometry of each entity. The refinement of the detection is
achieved by an active contour model, which is initialized
by the convex hull of the Harris feature points extracted
around the MPP step’s output rectangles. The method is
tested in real aerial images provided by the Hungarian In-
stitute of Geodesy, Cartography and Remote Sensing.
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1 Introduction

Building extraction is a key task in several aerial surveil-
lance, exploration and reconnaissance applications. In the
present paper we deal with a single optical image input (an
aerial photo or a satellite image), where building identifi-
cation is a hard monocular object recognition problem. We
can divide the previous methods into three different groups
based on the levels of solving the task. First, some tech-
niques address purely detection and counting the houses
[12], by extracting the estimated center points of the build-
ings without any geometrical information. Although these
approaches are efficient in computational complexity and
less sensitive for parameter tuning, they can hardly adopted
for building classification or change detection which re-
quire more detailed shape, size and spectral characteri-
zation of the entities. A second group of the existing
approaches uses simplified geometric approximations of
the buildings or building parts, such as rectangles [11] or
hexagons [10]. These models are suitable for a more com-
prehensive interpretation of the scenes, however fine de-
tails and the irregular patterns can not at all or only inac-
curately retrieved. As the resolution of the available re-
motely sensed images increases rapidly, such rough mod-
eling of the building shapes yields a notable amount of
lost information for the higher level interpretation modules.
These effects increase the significance of a third group of

approaches, which aim to describe the accurate building
outlines by general parametric curves [6]. Variational tech-
niques are efficient tools to address contour approximation,
meanwhile they can embed prior information for the build-
ing outlines. However, contour initialization is challeng-
ing, especially, if the scene can not be described by a few
template building shapes as in [6]. To achieve an efficient
outline estimation, corner detectors [5] can applied to ex-
tract contour points of the objects. Based on these contour
points, active contour algorithms [13, 2, 8, 9] are able to
detect the outline of the buildings.

2 Proposed approach

The proposed approach consists in two steps. First, we at-
tempt to localize the buildings in the scene and roughly es-
timate the shape of each rooftop. This task is fulfilled by a
Marked Point Process (MPP) model [1], which fits rectan-
gles to the observed building candidates. Second, using the
coarse location and shape information we identify feature
points inside and around the rectangular rooftop masks, and
based on the selected key points we initialize an active con-
tour [7] to obtain the building outlines. The main contribu-
tion of this paper lies in the linking process between the two
steps: we propose a novel key point selection technique for
the initial contour, which jointly exploits low level features
from the original image and structural descriptors from the
MPP output mask. Finally the efficiency of the cascade
procedure is tested on real aerial images and discussion is
given about the results.

3 Preliminary Building Mask Estimation

The goal of this model part is to assign to each building
segment of the scene a unique rectangle which estimates
the mask of the observed rooftop.

Let us denote by S the 2-D pixel lattice of the input
aerial image, and by s ∈ S a single pixel. A rectangular
building segment candidate u is described by four parame-
ters: sc = [cx, cy] ∈ S center pixel, eL, el ∈ [Lmin, Lmin]
side lengths and θ ∈ [−90◦,+90◦] orientation [see Fig.
1(a)].
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(a) (b)

Figure 1. Demonstration of the (a) object rectangle param-
eters and (b) calculation of the interaction potentials

3.1 Marked Point Process Model

We model an aerial image as composition of an arbitrary
number of u rectangular Building Segments (BS) whose
positions and geometric parameters are realizations of a
MPP [4]. Let us denote by Ω the space of all configura-
tions of a finite number of BS objects. We will refer to
a given object configuration in Ω by ω, where ω = ∅ or
ω = {u1, . . . , un} for an arbitrary positive integer n. We
also define a neighborhood relation in the BS object space:
u ∼ v if their rectangles intersect.

Next, we introduce a Φ(ω) energy function on the Ω
configuration space, so that we aim to fulfill that the opti-
mal configuration exhibits the minimal energy. The energy
function takes into account the interactions between the ge-
ometric objects (the prior energy Φp(ω)), and the way they
fit to the image data (the data energy Φd(ω)):

Φ(ω) = Φp(ω) + Φd(ω)

The optimal BS population ω̂ is obtained as the Max-
imum Likelihood (ML) configuration estimate:

ω̂ = argmin
ω∈Ω

Φ(ω) (1)

3.1.1 Prior energy

We begin with the Φp(ω) energy part, which prescribes
prior geometric constraints in the model. Since we aim to
extract individual building entities, we must penalize over-
lapping between different BS rectangles. Therefore, we de-
fine I(u, v) interaction potentials, which penalize object
pairs according to the I(u, v) normalized intersection area
[Fig. 1(b)]:

I(u, v) =
Area{u ∩ v}

Area{u}+ Area{v}

where u ∩ v means the intersection of objects u and v.
Finally, the complete prior energy term of the popula-

tion is calculated as:

Φp(ω) =
∑

u,v∈ω
u∼v

I(u, v)

.

Figure 2. Different color components: (a) is the R compo-
nent of the RGB color space, (b) is the u* component of the
L*u*v* color space

Figure 3. Edge and shadow features

3.1.2 Data energy

The data energy, AD(u), associated with object u, charac-
terizes a proposed building segment u = {cx, cy, eL, el, θ}
depending on the local image data, but independently of
other objects of the population. The data term of the whole
configuration is obtained as:

Φd(ω) =
∑
u∈ω

AD(u)

A BS u with AD(u) < 0 is called attractive ob-
ject. Since according to Sec. 3.1.1 all prior terms are non-
negative, the optimal population (1) should consist of at-
tractive objects exclusively: if AD(u) > 0, removing u
from the configuration results in a lower Φ(ω) global en-
ergy.

To fit the above framework to the building detection
task, we need to define the AD(u) data term appropriately.
This term must assigns to each proposed object candidate
an energy value (i.e. negative fitness value), which evalu-
ates the hypothesis that u is a building in the image. The
proposed energy function, detailed in [1], can integrate dif-
ferent feature-information such as roof color, roof edge and
shadow. On one hand, red roofs [10] can be detected in
color images using the u* and v* color components of the
corresponding pixel values in CIE L*u*v* color space rep-
resentation (See Fig. 2). Thereafter with notation Ru for
the mask and R̃u for the dilated mask of u’s rectangle, the
color term prefers objects which contain in majority roof
colored pixels inside Ru and background pixels in R̃u\Ru.
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Figure 4. Rectangular footprint results, obtanied by the
MPP based detector module

For non-red roofs we can rely on the gradient and shadow
maps exploiting that under the roof edges strong intensity
changes should be observed in the images, while in sunny
weather dark shadow blobs are present next to the buildings
in the shadow direction [11] (See Fig. 3).

3.2 Optimization

For the estimation of the optimal object configuration
(1) we have applied the recent Multiple Birth and Death
(MBD) algorithm [4]. The steps are as follows:

Initialization: start with an empty population ω = ∅.
Main program: initialize the inverse temperature pa-

rameter β = β0 and the discretization step δ = δ0 and a
constant basic birth frequency b0. Alternate the following
three steps, till convergence is reached

1) Birth step: Visit all pixels of the S lattice one af-
ter the other. At each pixel s ∈ S call Object Generation
procedure with probability δ · b0: create a new BS object
u with center s; set u’s side length and orientation param-
eters randomly following prior size distributions and add u
to the current configuration ω.

2) Death step: Consider the current configuration ω
and create a list of the u ∈ ω objects sorted from the highest
to the lowest AD(u) values. For each object u taken in
this order, compute the cost of deleting u from ω w.r.t. the
global configuration energy:

∆Φu
ω = Φ(ω/{u})− Φ(ω) = −AD(u)−

∑
v∈ω
v∼u

I(u, v)

Next, we derive the pd(u) death rate as follows:

pd(u) = f (∆Φu
ω) =

δ · exp (−β ·∆Φu
ω)

1 + δ · exp (−β ·∆Φu
ω)

(2)

Finally, we remove u from ω with a probability pd(u).
4) Convergence test: if the process has not converged

yet, increase the inverse temperature β and decrease the
discretization step δ with a geometric scheme, and go back

to the Birth step. The convergence is obtained when all
the BS objects added during the birth step, and only these
ones, have been killed during the death step.

3.3 Discussion of the MPP detector results

The above detailed MPP detector results in a set of ori-
ented rectangles which estimate the building footprints. As
seen in Fig. 4, most building segments are correctly de-
tected, however some roofs are only partially covered by
the extracted masks, and connected roof parts may break
up into many pieces (see the building in the bottom left
corner). Moreover, since the roofs in the scene have vari-
ous and irregular shapes, the proposed rectangular outline
approximation proves to be often coarse. For this reason,
we continue with a second step in the next section, which
is responsible for the extraction of more faithful contours.

4 Refinement of the MPP Detection

In the first step, a feature (or saliency) point extraction tech-
nique is applied, which is based on the Harris corner detec-
tor [5] and helps to find saliency points in the surroundings
of the estimated building locations.

Secondly, the generated saliency points and the edge
information of the image are combined in a graph based
representation to get the initial contour estimation of the
buildings.

Finally, the Gradient Vector Flow (GVF) [13] active
contour method detects the accurate object boundaries.

4.1 Feature point extraction

The Harris corner detector was introduced in [5]. The algo-
rithm based on the principle that at corner points intensity
values change largely in multiple directions. By consider-
ing a local window in the image and determining the av-
erage changes of image intensity result from shifting the
window by a small amount in various directions, all the
shifts will result in large change in case of a corner point.
Thus corner can be detected by finding when the minimum
change produced by any of shifts is large.

The method first computes the Harris matrix (M ) for
each pixel in the image:

M =
[
A C
C B

]
, (3)

where A = ẋ2⊗w, B = ẏ2⊗w, C = ẋẏ⊗w. ẋ and
ẏ denote the approximation of the first order derivatives, w
is a Gaussian window [5].

Then, instead of computing the eigenvalues of M , an
R corner response is defined:

R = Det(M)− k ∗ Tr2(M), (4)

where Det and Tr denote the determinant and trace and k
is a coefficient (usually around 0.04).
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Figure 5. Extracted feature points around the object loca-
tions estimated by the MPP based detector

This R characteristic function is used to detect cor-
ners. R is large and positive in corner regions, and negative
in edge regions. By searching for local maxima of R, the
Harris key points can be found.

In our case, when searching for object contours, we
need to extract both corner and edge points. Hence, the
traditional R characteristic function need to be modified.
According to [7] the following modification of R can em-
phasize corner and edge points equally:

Rlogmax = max(0, log[max(λ1, λ2)]), (5)

where λ1 and λ2 are the eigenvalues of the M Harris
matrix (Eq. 3) .

The eigenvalues define separate cases: both of them
are large in corner regions, only one of them is large in edge
regions and both of them are small in flat regions [5]. When
emphasizing corners and edges, they both have one large
component, thus max(λ1, λ2) function separates the flat
and non-flat regions accurately. To produce a steady feature
map, the dynamics of the characteristic function should be
compressed into a balanced distribution by keeping the nec-
essary strength of the main attractors. The natural logarith-
mic (log) mapping function satisfies this condition: it has a
balanced output for both corner and edge saliency. The tar-
get set of the Rlogmax is the positive domain, thus the outer
max function is responsible for replacing negative values
of small λs (flat points) with zeros. Saliency points are
chosen as the local maxima of Rlogmax.

When searching for object outlines, only saliency
points around the estimated building locations are ex-
tracted. The size of the interest area is determined by the
resolution of the image. Fig. 5 shows the result of feature
point extraction.

4.2 Graph based contour localization

Now a set of saliency points is given, denoting possible
objects, which serves as the basis for building contour de-

Figure 6. Subgraphs given after matching procedure

tection. We redefine the problem in terms of graph theory
[12].

A graph G is represented as G = (V,E), where V
is the vertex set, E is the edge network. In our case, V is
already defined by the set of feature points. Therefore, E
needs to be formed. Information about how to link the ver-
tices can be gained from edge maps. These maps can help
us to only match vertices belonging to the same building.

If objects have sharp edges, we need such image mod-
ulations, which emphasize these edges as strong as it is pos-
sible. By referring back to Fig. 2(a) and 2(b), we can see
that u* component of L*u*v* color space can intensify red
color component and R component of RGB is suitable for
emphasizing gray color.

By generating theR and u∗ components of the image,
Canny edge detection [3] with large threshold (Thr = 0.4)
is executed on them. Cr and Cu marks the result of Canny
detection.

The process of matching is as follows. Given two ver-
tices: vi = (xi, yi) and vj = (xj , yj). We match them if
they satisfy the following conditions:
(1.) d(vi, vj) =

√
(xj − xi)2 + (yj − yi)2 < ε5,

(2.) C...(xi, yi) = true,
(3.) C...(xj , yj) = true,
(4.) ∃ a finite path between vi and vj in C....
C... indicates eitherCr orCu. ε5 is a tolerance value, which
depends on the resolution and average size of the objects.
We apply ε5 = 20.

These conditions guarantee that only vertices con-
nected either in Cr or Cu edge maps are matched and
closely located buildings are separated correctly. After this
step we obtain a graph composed of many separate sub-
graphs, which can be seen in Fig. 6. The unmatched points
indicate noise and are discarded. Only subgraphs surround-
ing the given mask centers are retained for contour detec-
tion step.

4.3 Object contour detection

To determine the exact contour of the buildings, we applied
the classical Gradient Vector Flow (GVF) active contour
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Results of the joint building localization and outline extraction approach. In the first column the original images can
be seen, the second column shows the detected buildings.

method [13]. The evolution of the active contour is con-
trolled by different energies. Internal energy is responsible
for elasticity and rigidity of the contour, while external en-
ergy represents the constraints of the image. GVF snake
defined a new external force as a diffusion of the gradient
vectors of a gray-level or binary edge map derived from the
image and proved to be able to detect concave boundaries
as well.

To achieve the best performance, the initial contour of
the GVF has to be defined closely to the object boundaries.
For this reason, we calculated the convex hull of the gener-
ated subgraphs, which could be suitable as starting outline.
Two cases were defined: if the convex hull surrounds a lo-
cation estimated by the MPP detector, then it was used as
initial contour; else the outline of the rectangle mask was
used as initial contour.

After the GVF iterative process the detected contours

are checked. If the detection was successful, the obtained
boundary should contain the center of the given rectangle
mask. If this condition is not satisfied, then the detection
has to be reconsidered. Depending on the initial contour,
two cases were separated again: if the convex hull was used
as initial contour, the GVF method is repeated with the rect-
angle mask used as initial contour and the resulted contour
is checked again with the same procedure. If the outline
of the rectangle mask was used as initial contour, then the
unsatisfied condition shows that the active contour method
could not refine the result of the Marked Point Process. In
this case the given rectangle mask will be the detection re-
sult.
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5 Experiments and Conclusion

Results of the joint building localization and outline extrac-
tion approach can be seen in Fig. 7 for different remotely
sensed images.

The advantage of the MPP detector (see Sec. 3.1) is
the accurate localization of buildings, but the rectangular
contour estimation should be refined. Therefore a com-
plex object extraction method has been introduced, which
retrieves saliency points of the buildings, connects the co-
herent points by a graph based localization step, then de-
tects the object contours with an active contour segmenta-
tion method. By comparing Fig. 4 and Fig. 7(b) the im-
provement of the joint approach can be observed. The vari-
ous outline of buildings were detected more accurately and
broken building segments were merged into one contour
(building in the bottom left corner).
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