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Abstract— A control system based on feedback linearization
is developed for a high-speed supercavitating underwater vehi-
cle. The supercavitation bubble surrounding the body leads
to reduced drag but is also responsible for the undesired
switched, nonlinear and delay dependent behavior caused by
the phenomena known as planing. The theoretical contributions
of the switched control design are discussed in connection with
the mathematical description of the system. Special attention
is made to understand and handle the complex and novel
dynamics of the vehicle.

I. PROBLEM DESCRIPTION

Based on the recent advancements [8], [6], [7] in simula-
tion and control of a High-Speed Supercavitating Underwater
Vehicle (HSSV), a new mathematical model was developed
[1] to capture more details of the vehicle dynamics. The non-
linear interaction of the body with the cavity wall, showing
memory effect, is very important, hence the way the cavity
surface is described (cavity shape is a function of the history
of the vehicle motion and cavitator area) plays an important
role in the vehicle dynamics (Fig. 1). The theoretical aspects,
i.e. controller design, controllability and tracking, raised by
the novel system type are discussed in the following sections.
The layout of the paper is as follows: a brief description of
the generalized vehicle model developed in [1] is presented in
Sec.II followed by the basic overview of the proposed control
methodology (Sec.III). Section IV describes the theoretical
design and controllability properties, including a solution for
the reference signal tracking. Simulation results are presented
in Section V. The future direction of this research and
conclusions are presented in Sec.VI.

II. MODEL DESCRIPTION

The system equations for the longitudinal motion of the
HSSV are written in a local tangent reference frame attached
to the nose of the vehicle (Fig. 2). The states in the state-
space equations are: z(t)[m] nose vertical position; θ(t)[rad]
body pitch angle; w(t)[m/s] vertical speed; and q(t)[rad/s]
body pitch rate. The two control inputs are δcav and δfin

the cavitator and fins deflection. In addition to the gravity
force (Fg) another force (Fp) caused by the contact of the
vehicle with the fluid surface can be present. It depends on
the relative immersion depth (h′) and immersion angle (α) of
the transom. Due to the lack of space the details of the system
equations for the HSSV are omitted but the reader is referred
to [1] for further details. The overall system equations can
be written as:

ẋ(t) =
{

Ax(t) + Bu(t) + Fg if cT (δ)x(t) ≤ 0,

Ax(t) + Fp(t, x, δ) + Bu(t) + Fg if cT (δ)x(t) ≥ 0,
(1)
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Fig. 1. Water tunnel experiment on supercavitation

Fig. 2. The underwater vehicle with all the variables in the longitudinal
plane during immersion

where x(t) ∈ X ⊂ R
4, x0 = x(t0), u(t) ∈ R

2, xT (t) =
[ẑ(t), θ(t), w(t), q(t)], ẑ(t) = z(t) + R − Rc, and cT (δ) =
[1 − δ, 0, L, 0] with δ denoting the delay operator: δx(t) =
x(t − τ). Using this notation, Fp(t, x, δ) can be written as:

Fp(x, δ) = P (1 − R′

h′(x, δ) + R′ )
2(

1 + h′(x, δ)
1 + 2h′(x, δ)

)α(x, δ),

(2)

h′(x, δ) =
{

R−1cT (δ)x(t) if cT (δ)x(t) ≤ 0,

0 if cT (δ)x(t) ≥ 0,
(3)

α(x, δ) =
{

cT
α(δ)x(t) − V −1Ṙc if cT (δ)x(t) ≤ 0,

0 if cT (δ)x(t) ≥ 0,
(4)

where cT
α = [0, 1, δ/v, 0].

Eqs.1-4 describe the system as a bimodal, switched sys-
tem. In the first (linear) mode the vehicle is flying inside
the cavity and in the second mode it is planing e.g. on the
bottom (or top) of the cavity. Note the characteristics of
the switched system: (i) the switching hyperplane depends
on the delayed state variable x(t − τ), (ii) in the first
mode the system dynamics is linear and in the second
mode it is nonlinear input affine, i.e. the control inputs
effect the dynamics linearly in both modes, and (iii) the
switching condition does not depend on the control inputs.
The reachability (controllability) properties of this system
are important for control design.

III. CONTROLLER DESIGN CONSIDERATIONS

The longitudinal axis HSSV model has linear and non-
linear time delay dynamics with three distinct modes: free
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flying, planing at the bottom and at the top of the cavity. The
planing conditions are linear and define a switching hyper
plane that separates the dynamic modes. Controllability
results for bimodal switching systems are available for linear
case under very specific conditions only [4]. To make use
of linear controllability results, the approach taken in this
paper is to apply different feedback laws in each modes to
transform the system to linear time invariant, with the as-
sumption of full state measurement. The control law design is
synthesized in a new multivariable canonic coordinate frame.
Extending the controllability results on bimodal switched
LTI systems to time delayed switching conditions, requires
the analysis of time delayed zero dynamics. The tracking
problem is solved using a multivariable pole placement [1]
extension of dynamic inversion.

Given that the input variables enter linearly in both modes,
and all the states are measurable (assumption): it is possible
to select two outputs such that the relative degrees are
identical in both modes.

This allows the system to be transformed into LTI canon-
ical form using linear state feedback in the central mode (1)
and nonlinear state-delayed feedback in the planing mode
(2,3). Hence the state equations in both modes can be
linearized using a similar structure.

After feedback linearization, the system has identical
dynamics in both modes. This implies that the dynamics are
continuous on the switching surface c(δ)x = 0. To analyze
controllability, the zero dynamics of (c(δ), Ac, Bc) have to
be computed. The state space is time dependent due to the
delay dependent switching condition. Using both inputs, the
zero dynamics will be controllable. The tracking problem
can be solved using multivariable pole placement extension
of the switching dynamic inversion controllers.

IV. THEORETICAL BACKGROUND OF THE CONTROLLER

DESIGN

Our approach relies on the assumption that the delay in the
equations of motion can be eliminated by applying suitable
feedback. Then the controllability analysis and the control
design can be performed for the bimodal LTI system. Since
the concept of relative degree plays a central role in this
approach, its definition for nonlinear, time delay and LTI
systems is given.

A. Feedback linearization
Consider a nonlinear input affine system:

ẋ = f(x) +
m∑

i=1

gi(x)ui, x ∈ X , u ∈ U (5)

yj = hj(x), yj ∈ Y, j = 1, . . . , p, (6)

Definition 1: The system has a vector relative degree
r = [r1, . . . , rp], ri ≥ 0,∀i, if at a point x0

(i) Lgj
Lk

fhi(x) = 0, . . . j = 1, . . . , m, k < ri−1,

(ii) The matrix

AIA =

⎡⎢⎣Lg1L
r1−1
f h1(x), . . . , Lg1L

r1−1
f h1(x)

...,

LgmL
rp−1
f hp(x), . . . , LgmL

rp−1
f hp(x)

⎤⎥⎦ (7)

has rank p at x0.

For linear time invariant (LTI) systems given by (A, B,C),
we have that LgjL

ri−1
f hi(x) = ciA

ri−1bj and if p = m
then the vector relative degree is defined if rankALTI =
m. The concept of relative degree can be extended to time
delay systems, too. Usually this is defined for a discrete time
equivalent of the continuous time systems by introducing the
discrete time shift operator δ as δxt = xt−τ with τ denoting
the given time delay. The time delay system is given now
by (A(δ), B(δ), C(δ)), i.e. the matrices depend on the delay
operator. This implies that the coefficients are elements of the
polynomial ring R[δ]. The relative degree is defined similarly
to the LTI case as follows.

Definition 2: Given the single input - single output linear
time delay system (A(δ), b(δ), c(δ)). It has relative degree
r > 0 if cAkb = 0, k = 0, . . . , r − 1 and cArb �= 0. It
has pure relative degree r if in addition cArb is an invertible
element of R[δ].

This definition has an obvious extension to the multivari-
able case. It requires the matrix A(δ) to be invertible over
Rp×p[δ]. To perform the analysis and design a controller,
new state variables for equation 1 are chosen to be as
x̄ = Tcx,: ⎡⎢⎣x̄1(t)

x̄2(t)
x̄3(t)
x̄4(t)

⎤⎥⎦ =

⎡⎢⎣ z(t)
−V θ(t) + w(t)

θ(t)
q(t)

⎤⎥⎦ (8)

The matrix used for this coordinate transformation is:

Tc =

⎡⎢⎣ cᵀ
1

cᵀ
1A
cᵀ
2

cᵀ
2A

⎤⎥⎦ =

⎡⎢⎣1 0 0 0
0 −V 1 0
0 1 0 0
0 0 0 1

⎤⎥⎦ (9)

where the first two states were considered as output variables.
(C = [c1 c2])

The state space equations in the new coordinate system
are:

˙̄x =
Acx̄(t) + Bcu(t) + F̄g if c̄T (δ)x̄(t) ≤ 0,
Acx̄(t) + F̄p(t, x, δ) + Bcu(t) + F̄g if c̄T (δ)x̄(t) ≥ 0,

(10)

where

Ac =

0 1 0 0
−α110 −α111 −α120 −α121

0 0 0 1
−α210 −α211 −α220 −α221,

Bc =

0
cᵀ
1
AB
0

cᵀ
2
AB

(11)

The difference between Fgrav and F̄grav is that Fgrav =
(Tc · Fgrav) + C1 where C1 is a constant associated with
the shift in the origin of the coordinate system. Similarly
F̄plane = (Tc · Fplane).

Note that the inputs enter linearly in the state equations
in both modes. In addition, it is assumed that all states can
be measured. This allows us to select two outputs defined as
y1 = x1 and y2 = x3 constituting an output matrix Cc, such
that there exists pure vector relative degree in both modes,
and in addition, these are identical. The relative degree for
the modes are:

r1
1 = 2, r1

2 = 2, r1
1 + r1

2 = n = 4 Mode 1 (12)

r2
1 = 2, r2

2 = 2, r2
1 + r2

2 = n = 4 Mode 2 (13)
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The consequence of this property is that one can apply state

feedback in both modes such that it eliminates time delay

in Mode 1 and nonlinearity (exact feedback linearization) in

Mode 2. This feedback is given by:

uflc =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M−1

1 (ẏ13(t) − Fαx(t) − F̄g + vI(t)

if cT (δ)x(t) ≤ 0,

M−1
1 (ẏ13(t) − Fαx(t) − F̄g − F̄p(x, δ) + vII(t)

if cT (δ)x(t) ≥ 0,
(14)

where M1 = (CAB), y13 = [y1, y3]T , and the feed-
back gain Fα is defined by the controllability invariants
αijk, i = 1, 2, j = 1, 2, k = 0, 1 of the linear part
A, B of the system (Eq.11).

The feedback linearized closed loop has the following
form in both modes:

ẋc =

⎡⎢⎣0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎦xc +

⎡⎢⎣0 0
1 0
0 0
0 1

⎤⎥⎦[
v1

v2

]
(15)

and the switching condition is given by the sign of ys =
c(δ)xc.

B. Controllability analysis of the bimodal system
The controllability of the linearized bimodal dynamics has

to be analyzed and a tracking controller designed. Results on
controllability of single input single output LTI systems with
single switching surface and relative degrees r = r1 = r2 =
1 has been published by Heemels et al. [4].

In their approach the problem is reduced to analyzing
the dynamics of the system on the switching surface. This
is given by the zero dynamics derived with respect to the
“switching output” ys. It was shown that the zero dynamics
have to be controllable when using positive ys in one mode
(negative ys in the second mode, respectively). Heemels et
al. assumed that the system is both left and right invertible
and the dynamics are continuous on the switching surface,
i.e. A1x + b1u = A2x + b2u.

The same results can be obtained using the following
simple reasoning. Since the relative degree r = 1, under
the above assumptions, the zero dynamics can be written as

η̇(t) = Hη +
{

g1ys(t) if ys(t) ≤ 0,

g2ys(t) if ys(t) ≥ 0,
(16)

with η ∈ R
n−1.

To compute the reachability subspace of the zero dynam-
ics, the Lie-algebra of the vector spaces Hη + g1y

+
s and

Hη + g2y
−
s need to be defined. y+

s , y−
s denotes a positive

(respectively negative) control to (H, g1) and (H, g2). It is
simple to show that this is the Lie - algebra generated by
Hx+[g1, g2]ys, yT

s = [y+
s , y−

s ] and this is given (at η = 0) by
the vectors {[g1, g2],H[g1, g2], . . . , Hn−2[g1, g2]}. Denote
this subspace by R(H, [g1, g2]). Thus a necessary condition
for controllability is that R(H, [g1, g2]) = R

n−1, i.e., the
pair (H, [g1, g2]) has to be controllable. This is a Kalman
- like rank condition, since in a given mode one can use
only positive (respectively negative) control in the zero dy-
namics, imposing an additional condition on H . A sufficient
condition is that if H has an even number of eigenvalues
with zero real parts, then the zero dynamics are controllable

with nonnegative inputs. More results on controllability with
nonnegative inputs can be found in [3], [9]. This result is
extended for our application as follows.

Consider the MISO system with B ∈ R
n×m and ys = Cx.

Also consider the case, when there is a direction p ∈ Im{B}
such that the system is left and right invertible corresponding
to the direction p. Using the notation B = [ p B̄], one has
the system:

ẋ = Ax + pup + B̄ū, ys = Cx. (17)

Let us denote by V∗ the largest (A, p) - invariant subspace in
C = ker{C} and by W∗ the smallest (C, A) invariant sub-
space over Im{p}. It follows that system has the following
decomposition induced by a choice of basis in V∗ and W∗:

ξ̇ = A11ξ + γv (18)

up =
1
γ

(−A12η − B̄21ū + v) (19)

η̇ = A22η + B̄22ū + Gys, (20)

Since r = 1, ξ = ys, equation (20) describes the dynamics
of the system on C. Rewriting the zero dynamics equation
as

η̇ = Pη + Qū + Rys. (21)

assuming that Q is monic.
Proposition 1: If the pair (P,Q) is controllable, then η

is controllable “without” using ys, e.g. by applying ū =
Q#(−Rys + w). If the pair (P,Q) is not controllable, then
the conditions of controllability with unconstrained ū but
nonnegative ys is

1) The pair (P, [QR]) has to be controllable.
2) Consider the decomposition induced by the reachabil-

ity subspace R(P,Q),

η̇1 = P11η1 + P12η2 + Qū + R1ys (22)

η̇2 = P22η2 + R2ys, (23)

where R2 �= 0. Then the imaginary part of the eigenvalues
of P22 cannot be zero.

Remark 1: The first condition is a Kalman-rank condition.
The second one can be given in some alternative forms using
e.g. results from [3], [9].

For the high speed supercavitating vehicle model, this
result has to be applied to a time delay system. The following
approach is taken.

Since only one delay time is present in the switching
condition, it is possible to discretize the system with an
extended state space by including the delayed state variable.
Since feedback linearization has been already applied, it is
possible to use a backward difference scheme defined for
LTI systems that preserves the geometry needed to analyze
the zero dynamics. The discrete time state equations are:

x(t + 1) = Adx(t) + Bdv(t), ys = Cdx(t) (24)

where

Ad =

⎡⎢⎢⎢⎣
1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
1 0 0 0 0

⎤⎥⎥⎥⎦ , Bd =

⎡⎢⎢⎢⎣
0 0

β21T β22T
0 0

β41T β42T
0 0

⎤⎥⎥⎥⎦ ,

Cd = [1, 0, L, 0,−1] (25)
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with T denoting the sample time.
The next step is to find the relative degrees by selecting

one of the inputs, v1 for example. They are identically r = 2
for both modes since the feedback linearization and state
transform resulted in the same linear canonic form in both
modes.

To obtain the zero dynamics one has to construct a state
transform matrix Tcd from the row vectors spanning the or-
thogonal complement of V∗ and Im{Bd1} where Im{Bd1}
is the first column of Bd.

It can be shown that V∗⊥ = span{cs, csAd} and the
remaining 3 rows of Tcd is selected from imB⊥

1 resulting in
the transform:

Tcd =

⎡⎢⎢⎢⎣
cs

csA
1 0 0 0 0
0 0 1 0 0
0 β41T 0 −β21T 0

⎤⎥⎥⎥⎦ (26)

Using this state transform [ξT (t), ηT (t)]T = Tcdx(t) and that
V∗ is (Ad, Bd1) invariant, leads to the following decompo-
sition:

ξ(t + 1) =
[
0 a12

0 a22

]
ξ(t) +

[
0 0 0
0 e22 e23

]
η(t)+

+
[

0
b21

]
v1(t) +

[
0

f22

]
v2(t) (27)

ys = [1 0] ξ(t) switching condition (28)

η(t + 1) = Pη(t) + Rξ(t) + Qv2(t), (29)

where

P =

[
p11 p12 p13

0 p22 p23

0 0 p33

]
, R =

[0 r12

0 r22

0 0

]
, Q =

[ 0
0

q31

]
.

(30)
The zero dynamics are described by the last equation. (The

same approach can be repeated when selecting the second
column of Bd.) Using Proposition 1, it can be seen that due
to their special structure, the (P,Q) pair is controllable. This
implies that the dynamic inversion controller with switching
and an pole placement for tracking error stability can be
applied to control the bimodal system.

C. Multivariable Pole Placement for Tracking
The performance objective of the control design is to track

desired state commands. The inversion based controller has
the following form:[

u1(t)
u2(t)

]
= (CAB)−1(

[
ẋ1(t)
ẋ2(t)

]
ref

− [αu]
[
x1(t)
x2(t)

]
−

− [αl]
[
x3(t)
x4(t)

]
− [Gc] − [Pc(t, τ)] −

[
v1(t)
v2(t)

]
) (31)

The reference tracking part of the controller:[
v1(t)
v2(t)

]
= [ᾱu]

[
x1(t) − x1,ref (t)
x2(t) − x2,ref (t)

]
+[ᾱl]

[
x3(t) − x3,ref (t)
x4(t) − x4,ref (t)

]
(32)

[αu] =
[−α110 −α111

−α210 −α211

]
[αl] =

[−α120 −α121

−α220 −α221

]
(33)

[ᾱu] =
[−ᾱ110 −ᾱ111

0 0

]
[ᾱl] =

[
0 0

−ᾱ220 −ᾱ221

]
(34)

The feedback linearized closed-loop has the following form
in all modes:

ẋc =

[
0 1 0 0

−α110 −α111 −α120 −α121

0 0 0 1
−α210 −α211 −α220 −α221

]
xc−

− BcB
−1

([−α110 −α111 −α120 −α121

−α210 −α211 −α220 −α221

]
xc +

[
v1

v2

])
(35)

Acl = Ac − BcFinv + BcFctr =⎡⎢⎣ 0 1 0 0
−ᾱ110 −ᾱ111 0 0

0 0 0 1
0 0 −ᾱ220 −ᾱ221

⎤⎥⎦ (36)

The closed-loop system is stable for a given set of ᾱ
coefficients. With feedback linearization, the system behaves
the same regardless of the interior switching state, hence
one linear outer loop controller can guarantee stability and
appropriate tracking properties for the complex system. A
variety of linear design approaches can be used for that
purpose [5], [2], but the focus of this paper is on the feed-
back linearization controller. Hence a simple pole-placement
controller is synthesized as the outer-loop tracking controller.
The inner loop dynamics after feedback linearization, using
the new canonical coordinates are:⎡⎢⎣ẋ1

ẋ2

ẋ3

ẋ4

⎤⎥⎦ =

⎡⎢⎣0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎦
⎡⎢⎣x1

x2

x3

x4

⎤⎥⎦ + Bc

[
Δδf

Δδc

]
(37)

where Δδf,c denotes the additional deflection of the fins
and cavitator commanded by the pole-placement controller.
The objective is to place the closed-loop poles to obtain the
desired tracking response. This system is nilpotent, because
all eigenvalues of A are zero. The first two states relative
to vertical position and speed are controlled by the fins
(Δδf ) and the other two states relative to vehicle angle and
angle rate are controlled by the cavitator due to the lack
of cross coupling. The feedback linearization controller is
denoted by Finv and the tracking controller by Δδf and
Δδc respectively. The resulting reference tracking controller
has the following form:[
Δδf
Δδc

]
= (CAB)−1

{[−ᾱ110 −ᾱ111

0 0

] [
x1(t) − x1,ref (t)
x2(t) − x2,ref (t)

]
+

+
[

0 0
−ᾱ220 −ᾱ221

] [
x3(t) − x3,ref (t)
x4(t) − x4,ref (t)

]
+

[
ẋ2,ref
ẋ4,ref

]
} (38)

The closed-loop has the following dynamics:

Acl = Ac − BcFinv + Bc

[
Δδf

Δδc

]
(39)

The tracking part of the controller is responsible for the
location of the poles. The eigenvalues of the system are:

λ1,2 = −0.5ᾱ221 ± 0.5
√

(−ᾱ221)2 − 4ᾱ220 (40)

λ3,4 = −0.5ᾱ121 ± 0.5
√

(−ᾱ121)2 − 4ᾱ120

which are stable based on the selection of the ᾱ coefficients.
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Fig. 3. Inner loop: Switching feedback linearizing controller
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∫
�xFL

�AFL

��

Feedback linearized system

Fig. 4. Outer loop: Inversion controller for tracking

The structure of the feedback controller can be seen in
Figure 3-4. The inner-loop feedback linearizes the system
and the outer-loop provides reference tracking. Different
controllers are used in the 3 switched modes. They are
selected by a switching logic based on the planing model
and measurements. The cavity wall is noisy and it is the
switching surface. Hence the outer-loop must be robust to
handle that “noise.” After feedback linearization the refer-
ence tracking part needs only to be designed for a linear
model. It is possible to track both position, velocity, angle
and angle rate commands with different weights if they are
selected consistently. The designed pole placement controller
also operates on the transformed canonic coordinates. The
special structure of the feedback linearized system enables
control of position and angle without cross coupling.

V. CONTROL OF A SUPERCAVITATING VEHICLE MODEL

Simulations are performed in MATLAB/SIMULINK envi-
ronment and parameter dependencies are analyzed in com-
parison with a reference setup. The maneuver is an obstacle
avoidance maneuver: the horizontal speed is constant 75m/s
while the vehicle moves up 17.5m and returns to continue
its straight path as seen in Figure 6.

It is assumed that the water conditions (pressure, tem-
perature, viscosity etc.) are constant during the 4 second
maneuver. A noise component is added to the cavity wall
resulting in an uncertain switching surface. The cavity wall
varies between 90 − 110% of the nominal cavity gap. The
noise is modeled as a random white noise process passing
through a filter Gn = 1

600s+1 . Another simplification in the
original problem is the lack of actuator model. It is included
in the simulation setup with dynamics: Gact = 1

200s+1 . The
performance specifications are to track trajectory reference
commands and reduce limit cycle oscillations. The reference
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Fig. 6. Control deflection and pitch rate with basic setup

tracking properties received the higher priority as compared
with the damping the oscillatory behavior. The following
controller gains were selected:−ᾱ110 = −40000;−ᾱ111 =
−400;−ᾱ220 = −90000;−ᾱ221 = −600 With which the
resulting eigenvalues are −300;−300;−200;−200.

The resulting contribution from the tracking part of the
controller with these high gains is still negligible comparing
with the inversion based contribution to compensate against
the effect of planing.

The basic actuator model is: Gact = 1
200s+1 which has

bandwidth 30Hz, noticeably slower actuators are not able to
stabilize the system, while faster actuators has better perfor-
mance, with less oscillation. The knowledge about delay time
also plays an important role in the controller performance.
The vehicle tracks the reference signal when the uncertainty
is small, but oscillations grow due to imprecise knowledge
of the delay, immersion into the liquid is getting deeper and
lasts longer, which results in instability when the uncertainty
in delay time exceeds approximately 20 percent.

The noise model can be modified two different ways:
magnitude and filter. The maximum planing depth remains
the same but the actuator deflection is more radical if the
noise has larger magnitude, it has larger spikes and has longer
settling times, Figure 8.

Changing the noise filter leads to different characteristic -
if it is faster than the sampling time of the sensors than it has
no effect, if it is slow enough than the controller can hardly
deal with it, it leads to larger planing depths and oscillations.
The control signals change less rapidly and have smaller
spikes. The simulation (Fig.9) shows a large magnitude noise
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Fig. 7. Trajectory tracking: Slow cavity noise
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Fig. 8. Trajectory tracking: High cavity noise

with Rc ± 0.5(Rc − R) cavity radius and a slow noise case
when the noise filter is Gn = 1

60s+1 .
As expected the maximum planing depth increases as the

maneuver become more radical. It is interesting to note that
the control signals do not follow the same trend. The fin
deflection remain basically the same, while the cavitator
deflection has small contribution from the increased planing,
possibly because the planing angle is different in the different
cases.

VI. SUMMARY AND FUTURE RESEARCH

Supercavitation is a very promising way to increase the
speed of underwater vehicles at the expense of a compli-
cated vehicle architecture. Successful development of such
a system will require increased collaboration between fluid
and control researchers. As an intermediate step the con-
trol design challenges including delayed state dependency,
nonlinearities and switching with noisy switching surface
were analyzed and an inversion based control methodology
was proposed on a recently developed 2-DOF mathematical
model of the HSSV.

The ultimate goal for the future research is implementation
of a three dimensional trajectory tracking controller on the
HSSV test vehicle. The 3-D motion will no longer have a
symmetry plane, hence the asymmetric fin immersion and
non-vertical planing forces leading to non input affine sys-
tems require special attention. Furthermore robust constraint
fulfillment remains an open issue, which can be attempted
to solve by RHC control based methods.
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Fig. 9. Trajectory tracking: 15, 18, 20m amplitude maneuvers
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