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Discrete time minimax tracking control with state and disturbance

estimation II: time-varying reference and disturbance signals

P. Bauer*, B. Kulcsar** and J. Bokor*

Abstract— The paper characterizes the properties of discrete
time minimax tracking control problem in the case of time
varying references and disturbances.

Hereunder, a multi step tracking control synthesis is sug-
gested for Linear Time Invariant (LTI) plants when the ref-
erence signal could be time dependent. Moreover, instead of
directly rejecting the effect of the (time varying) disturbance
signal, an intermediate estimation and centering step is pro-
posed. This step eliminates the main part of the disturbance
by its unbiased estimate. The solution combines the state
and disturbance estimation with linear quadratic and optimal
minimax tracking design. The resulted unified control solution
is LQ optimal on infinite horizon with constant references
and disturbances and sub-optimal on large horizons with time-
varying references and disturbances.

The paper clarify the effect of the time varying signals
on the stability and performance criteria. The multi step
procedure is illustrated via an ascending spiral trajectory
tracking simulation of a quadrotor helicopter.

Index Terms— LQ optimal minimax tracking, state and
disturbance estimation, time-varying signals

I. INTRODUCTION

Tracking of reference signals is important in many con-

trol applications. However, external disturbances can highly

reduce the tracking performance of the systems and they are

present in several systems. Here we consider discrete time

(DT), LTI systems with non previewable deterministic dis-

turbances and references (considering stochastic disturbances

also). Such system models can be related to aerial vehicles

having wind effects which have usually a strong deterministic

component.

In case of disturbance rejection needs, minimax or equiv-

alently H∞ control techniques arise as possible solutions.

However, if the disturbance lies in the low frequency range

it can be difficult to provide the design trade-off between

disturbance rejection and tracking performance.

In [5] a minimax tracking design for nonlinear wheeled

systems (robots) is presented which applies fuzzy logic

system to eliminate the uncertain dynamics and H∞ control

to attenuate the effect of the residue of fuzzy elimination and
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exogenous disturbances. The concept of this article can be

(and will be) well used to solve our design problem.

The main contribution behind the proposed idea in [10]

and in this paper is the extension of the state estimation

problem. Under certain condition, the disturbance corrupting

the plant input can be estimated jointly with the state

itself. Coupled state and disturbance estimator methods are

discussed in ex. [6], [7]. [8] suggests to use an augmented

Kalman filter, giving the possibility of noise adaptation by

weighting.

The present paper focuses on the time varying nature of

the reference and disturbance signal and the properties of the

resulted and augmented, discrete time minimax optimization

problem. Unlike in [10], this paper uses the extension of the

Kalman state estimation problem associating a dynamics to

the disturbance.

The paper is organized as follows. In section II the

problem is formulated and the steps of the proposed multi

step solution are listed. In section III, the solution steps

are detailed. In section IV, the properties for time-varying

references and disturbances are stated and proven. In section

V, a simulation example is published which solves the

3D trajectory tracking control of a quadrotor helicopter

using constant and ramp-type references. Finally, section VI

concludes the paper.

II. PROBLEM FORMULATION AND THE STEPS OF THE

PROPOSED SOLUTION

Let us consider the class of DT, LTI systems with deter-

ministic disturbances by

xk+1 =Axk +Bũk +G(dk + wk)

yrk =Crxk

yk =Cxk +H(dk + wk) + V vk

(1)

Where xk ∈ R
n, ũk ∈ R

m, dk ∈ R
d, yrk ∈ R

r, yk ∈
R

p, wk ∈ R
d, vk ∈ R

v are the system state, input,

deterministic disturbance, tracking output, measured output,

stochastic disturbance and measurement noise respectively

and A,B,G,Cr, C,H, V have appropriate dimensions. As-

sume that n ≥ m, n > d, r ≤ m, p > d, G is full

column rank, the pair (A,B) is stabilizable and wk and vk
are independent gaussian white noise signals, with known

covariance matrices E{wwT } = Qw and E{vvT } = Qv .

Assume also that rank(CrB) = r.

Let us restrict ourselves on the case when disturbance and

external stochastic noise act through the same direction G in

the state space.
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The goal is to track a prescribed constant or time-

varying reference signal with maximum disturbance attenu-

ation (minimum tracking error). The developed multi-step

solution is similar to the method applied in [5]. The steps of

the solution are as follows:

1) Design a stabilizing state feedback control input for

system (1). This makes step 2, 4 and 5 feasible.

2) Design the optimal state and disturbance estimator

for the stabilized system using an augmented Kalman

filter. The stochastic noises will be considered in this

step!

3) Construct the system input which cancels the distur-

bance effects in a least squares (LS) optimal way.

4) Design another control input, which guarantees zero

steady state tracking error in case of constant reference

and disturbance signals.

5) Center the original system (constructed in step 1) dy-

namics with the steady state equilibrium point achieved

in the previous step, and design an LQ optimal mini-

max tracker for this centered dynamics

6) Construct the final required input signal ũk summing

up all the inputs designed in the previous steps.

In the next section the above steps will be followed to

construct the final optimal (for constant references and

disturbances) and sub-optimal (for time-varying references

and disturbances) controllers.

III. THE STEPS OF THE DESIGN PROCEDURE

Step1: Design of a stabilizing state feedback controller for

(A,B)
This can be solved either with pole placement or LQ

optimal regulator design. The resulting system equations

are as follows (considering additional input to guarantee

tracking):

xk+1 = (A−BKx1)
︸ ︷︷ ︸

φ

xk +Buk +Gdk (2)

Step 2: Design an optimal state and disturbance estimator

for (φ,C,G,H)
[8] contains a more generic description of the design, here

we just show the main step of the idea. This can be solved

using the following augmented system dynamics for Kalman

filter design (by Qw and Qv):

[
xk+1

dk+1

]

=

[
φ G
0 I

] [
xk
dk

]

+

[
B
0

]

uk +

[
0
I

]

wk

yk+1 =
[
C H

]
[
xk+1

dk+1

]

+ V vk+1

(3)

This approximation of the time-varying disturbance is sug-

gested in [4] and works well also for slowly varying distur-

bances.

Step3: LS optimal disturbance cancellation with the control

input

The task is to find a control input component which

cancels most of the disturbances using their estimated value

(here ()+ is the Moore-Penrose pseudo-inverse of a rectan-

gular matrix). The equation has an exact solution if G = B
otherwise this solution is only LS optimal.

uk = ûk −B+Gd̂k (4)

Step4: Determining the solution of the zero steady state

tracking error problem considering constant reference and

disturbance

The equation to be solved can be constructed considering

(2) and (4) (here d∞ = d̂∞ and r∞ denotes the constant

disturbance and reference signal respectively). Here the ex-

istence of (I − φ)
−1

is guaranteed by step 1, and the pseudo-

inverse F+ exists because rank(CrB) = r (r ≤ m).

x∞ = φx∞ +Bû∞ +Gd∞ −BB+Gd̂∞

y∞ = Crx∞ = Cr (I − φ)
−1
B

︸ ︷︷ ︸

F

û∞+

+ Cr (I − φ)
−1

(I −BB+)Gd̂∞ = r∞

û∞ = F +r∞−

− F +Cr (I − φ)
−1

(I −BB+)Gd̂∞

(5)

Step5/1: Derivation of the LQ optimal finite horizon solution

for the centered output tracking minimax problem

The required steady state input to track a constant refer-

ence signal can be calculated using (5). However, the control

of the transient from initial state to steady state should be

considered. This can be designed together with the solution

of cases with time varying references in a unified framework

as follows. The centered state dynamic equation results from

(2), (4) and the steady state system equation (5):

xk+1 = φxk +Bûk +Gdk −BB+Gd̂k

x∞ = φx∞ +Bû∞ +Gd∞ −BB+Gd̂∞

xk+1 − x∞ = φ (xk − x∞) +B (ûk − û∞)+

+G (dk − d∞)−BB+G
(

d̂k − d̂∞

)

∆d̃k =
[

∆dTk ∆d̂Tk
]T

Bd =
[
G −BB+G

]

∆xk+1 = φ∆xk +B∆ûk +Bd∆d̃k

(6)

The last equation in (6) gives a disturbed system dynamics

around the steady state. In [10] Bd∆d̃k is considered together

as an artificial disturbance, but the reformulation here highly

improves the solvability of the resulting MDARE. The last

equation together with the centered reference signal ∆rk =
rk−r∞ can be used to form an LQ optimal minimax tracking

problem for the transient (in case of constant references) or

for the case with time varying references. The formulated

problem is similar to the case in [9]. At first, the finite

horizon solution should be derived considering the proper

functional. From this point the Lagrange multiplier method

can be applied to (7) and to the last equation in (6).
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J =
1

2

N−1∑

k=0

((∆xk −∆x̃k)
T
Q (∆xk −∆x̃k)+

+∆ûTkRu∆ûk − γ2∆d̃TkRd∆d̃k)+

+ (∆xN −∆x̃N )
T
Q (∆xN −∆x̃N ) where :

Q = CT
r Q2Cr

∆x̃k = CT
r

(
CrC

T
r

)−1
∆rk = H∆rk

(7)

The costate update equation, optimal control, worst case

disturbance and the structure of the costate variable results

as follows.

λk = Q (∆xk −∆x̃k) + φTλk+1

∆ûk = −Ru
−1BTλk+1

∆d̃∗k =
1

γ2
Rd

−1BT
d λk+1

λk = Pk∆xk + Sk∆x̃k+1 −Q∆x̃k

λN = Q∆xN −Q∆x̃N → PN = Q, SN = 0

(8)

Finally, the Modified Riccati Difference Equation (MRDE)

and an additional recursive equation results. The last expres-

sion in (9) is the expanded form of the costate variable. The

optimal control and worst case disturbance can be calculated

using this and (8).

Pk = Q+ φTPk+1[I +BR−1B
T

︸ ︷︷ ︸

M

Pk+1]
−1φ

SRk = Q∆x̃k + φT
[

I + Pk+1BR
−1B

T
]−1

SRk+1

SRk+1 = Q∆x̃k+1 − Sk+1∆x̃k+2

B =
[
B Bd

]
R =

[
Ru 0
0 −γ2Rd

]

λk+1 = Pk+1 [I +MPk+1]
−1
φ∆xk−

− [I + Pk+1M ]
−1

(QH∆rk+1 − Sk+1H∆rk+2)

(9)

This completes the derivation of the minimax tracking

controller for finite horizon problems. All the calculation

expressions in (9) are recursive, so they need the knowledge

of the reference signal on the whole horizon in advance. This

difficulty should be solved considering the infinite horizon

solution.

Step 5/2: Derivation of LQ optimal and LQ sub-optimal

infinite horizon solutions

For infinite horizon the MDARE can be easily constructed

from (9). Denote its solution by P∞. Now the generalized

form of the costate variable can be written as:

λk+1 = P∞ [I +MP∞]
−1
φ∆xk−

− [I + P∞M ]
−1

(S1∆rk+1 − S2∆rk+2)
(10)

This way uk = −R−1
u BTλk+1 and ∆d̃∗k = 1

γ2Rd
−1BT

d λk+1

are satisfied if one writes back λk+1 into them. To get an

LQ optimal solution S1 and S2 should be selected to satisfy

the other requirement λk = Q∆xk − QH∆rk + φTλk+1.

Substituting the general expression for λ (10) into this last

requirement and doing some manipulations considering the

last equation in (9) and assuming φ is invertible (this can

be guaranteed with pole placement design in Step 1) results

in a system of equations. In (11) the MDARE is written

which is satisfied for all ∆xk. For constant references ∆rk =
∆rk+1 = ∆rk+2 = 0, (12), (13) and (14) are also satisfied

and so, the solution is optimal. However, unfortunately it

is impossible to satisfy the last two equations for nonzero

∆rk+2 reference values.

P∞∆xk = Q∆xk + φTP∞ [I +MP∞]
−1
φ∆xk (11)

−S1∆rk = −QH∆rk (12)

S2∆rk+1 = −φT [I + P∞M ]
−1
S1∆rk+1 (13)

0 = φT [I + P∞M ]
−1
S2∆rk+2 (14)

So, the general LQ optimal solution of the problem is

impossible. However, in real applications at time instant k
∆rk+2 usually should be considered with linear extrapolation

because it is not known (see [9]). Considering this fact a sub-

optimal selection of S1 and S2 is possible (defining M2 =
[I + P∞M ]

−1
):

∆rk+2 = 2∆rk+1 −∆rk

− S1∆rk = −QH∆rk − φTM2S2∆rk

S2∆rk+1 = −φTM2S1∆rk+1 + 2φTM2S2∆rk+1
[

I −φTM2

φTM2 I − 2φTM2

]

︸ ︷︷ ︸

Z

[
S1

S2

]

=

[
QH
0

] (15)

In (15) Z is an invertible matrix so, the system of equations

can be solved for S1 and S2. Finally the control input for

the centralized problem (the worst case disturbance has an

analogous form):

∆ûk = −Kx2∆xk +KS1
∆rk+1 +KS2

∆rk

KS1
= KS1

− 2KS2

Kx2 = R−1
u BTP∞

[

I +BR−1B
T
P∞

]−1

φ

KS1
= R−1

u BT
[

I + P∞BR
−1B

T
]−1

S1

KS2
= R−1

u BT
[

I + P∞BR
−1B

T
]−1

S2

(16)

Step 6: The construction of the final control input signal

The final control input signal can be constructed conside-

ring (2), (4), (5), (6) and (16). The final result is:

ũk = −Kxx̂k −KS2
(rk+1 − rk) +Kr∞rk+1+

+Kd∞
d̂k where Kx = Kx1 +Kx2

Kr∞ =
(

Kx2 (I − φ)
−1
B + I

)

F +

M3 = (I −BB+)

Kd∞
= [Kx2 (I − φ)

−1
M3−

−Kx2 (I − φ)
−1
BF +Cr (I − φ)

−1
M3−

− FRCr (I − φ)
−1
M3 −B+]G

(17)
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Note that the estimated state is used instead of the real system

state, the rk+1 reference is used with Kr∞ instead of r∞
and d̂k is used instead of d̂∞ and this provides the appli-

cability both for constant and time-varying references and

disturbances. The control input of the state and disturbance

estimator uk should be calculated using Kx2 instead of Kx

(and φ should be used instead of A!). In the next section the

statement and proof of properties for time-varying references

and disturbances will be done.

IV. PROPERTIES FOR TIME-VARYING REFERENCES AND

DISTURBANCES

We assume that the disturbances and their estimates are

l∞ signals with the following l∞ norms (including wk and

noise effects on disturbance estimate also):

‖d+ w‖∞ = D <∞, ‖d̂‖∞ = D̂ <∞
Theorem 1 (BIBO stability): The derived control solution

guarantees BIBO stability for l∞ reference signals.

Proof: The boundedness of the states and outputs

should be proven. The l∞ norm of a bounded rk reference

signal is: ‖rk‖∞ = maxk |rk| = Rm <∞
Notice that xk is the system state, meanwhile the estimated

x̂k state is used in the control input (see (17)). This generates

the need to characterize their difference and construct a

scheme where the stable system matrix φ2 = φ − BKx2

can be used instead of the possibly unstable A. This charac-

terization can be easily done using the state estimation error:

x̂k = xk + xek (18)

Using expression (18) the control input can be redefined.

Because the state estimator is stable the state estimation error

has a finite l∞ norm also defined in the following equations:

ũk = −Kxxk −Kxx
e
k −KS2

(rk+1 − rk) +Kr∞rk+1+

+Kd∞
d̂k & ‖xek‖∞ = E

(19)

Using (1) and (19) the state at time step n of the controlled

system (with initial state x0) is as follows:

xn = φn2x0−

−

[
n−1∑

k=0

φk2BKxx
e
n−1−k

]

+

[
n−1∑

k=0

φk2BKS2
rn−1−k

]

+

+

[
n−1∑

k=0

φk2B (Kr∞ −KS2
) rn−k

]

+

[
n−1∑

k=0

φk2Gdn−1−k

]

+

+

[
n−1∑

k=0

φk2BKd∞
d̂n−1−k

]

(20)

To have an upper bound for the length of xn take the

euclidean (l2) norm of both sides in (20) and consider (19)

and ‖φk2‖ ≤ KRk
σ where Rσ ∈ R, Rσ < 1 and K ∈ R

for a stable φ2 matrix (this can be proven and ‖.‖ denotes

the induced l2 norm of a matrix). This way the l∞ norm

of xk is as shown at the end of (21). This is a finite value

so, the input to state stability is satisfied. The boundedness

of the outputs and output tracking errors can be proven in a

similar way. The effect of vk+1 in ‖yk‖∞ and ‖ek‖∞ can

be considered with its l∞ norm as an additional term.

|xn| ≤ KRn
σ |x0|+K

[
n−1∑

k=0

Rk
σ

]

(‖BKx‖E + ‖BKS2
‖Rm+

+ ‖B (Kr∞ −KS2
) ‖Rm + ‖BKd∞

‖D̂ + ‖G‖D)

‖xk‖∞ = max
n

|xn| < K|x0|+

+
K

1−Rσ
(‖BKx‖E + ‖B (Kr∞ −KS2

) ‖Rm+

+ ‖BKS2
‖Rm + ‖BKd∞

‖D̂ + ‖G‖D) <∞
(21)

Theorem 2 (finite error for ramp references): The

derived control solution guarantees finite tracking error in

all time steps for ramp-type references

Proof: A ramp-type reference signal can always be rep-

resented with its starting value and increment (or decrement):

rk+1 = rk +∆rr = r0 + (k + 1)∆rr

The state of the controlled system in the nth time step

with ramp-type reference signal can be written as follows:

xn = φn2x0 −

[
n−1∑

k=0

φk2

]

BKS2
∆rr +

[
n−1∑

k=0

φk2

]

BKr∞r0−

−

[
n−1∑

k=0

φk2BKxx
e
n−1−k

]

+

[
n−1∑

k=0

φk2BKd∞
d̂n−1−k

]

+

+

[
n∑

k=1

kφn−k
2

]

BKr∞∆rr +

[
n−1∑

k=0

φk2Gdn−1−k

]

(22)

The tracking error in the nth step and its upper bound (after

tedious manipulations) can be formulated as:

en = yn − rn = Crxn − r0 − n∆rr

|en| ≤ ‖Cr‖KR
n
σ |x0|+ ‖Cr‖

K

(1−Rσ)
‖BKx‖E+

+ ‖Cr‖
K

(1−Rσ)
|BKS2

∆rr|+ ‖Cr‖
K

(1−Rσ)
‖BKd∞

‖D̂+

+ ‖Cr‖
K

(1−Rσ)
|BKr∞r0|+ ‖Cr‖

K

(1−Rσ)
‖G‖D+

+ |r0|+ ‖Cr‖
KRσ

(1−Rσ)2
|BKr∞∆rr|+

+ ‖Cr‖nR
n
σ

KRσ

(1−Rσ)
|BKr∞∆rr| <∞

(23)

V. THE SIMULATION EXAMPLE

The usefulness of the developed method is proven with

a discrete time (DT) equivalent of a continuous time (CT)



THIS IS THE AUTHOR VERSION OF ARTICLE PUBLISHED AT IEEE MED'09 CONFER ENCE ( c©IEEE) 5

quadrotor dynamical model. The model has the following

state, input and measured output variables:

States:

• n1 n2 n3 n4 rotational speeds of the four electric

motors

• u v w velocity components in body coord. sys.

• P Q R angular velocity components in body coord.

sys.

• ϕ θ ψ Euler angels

• Z vertical position in earth coord. sys.

Inputs:

• δpitch pitching command

• δroll rolling command

• δyaw yawing command

• δasc/desc ascending / descending command

Measured outputs:

• n1 n2 n3 n4 rotational speeds of the four electric

motors

• u̇ v̇ ẇ accelerations in body coord. sys.

• P Q R angular velocity components in body coord.

sys.

• ϕ θ ψ Euler angels

• h = −Z flight altitude in earth coord. sys. (assuming

flat ground)

The sample time was selected to be Ts = 0.0125sec because

the open loop bandwidth is ωoB = 20rad/sec and so, Ts =
1/(4ωoB). The structure of the DT dynamical equations is

the same as in (1). d is wind disturbance, which has a

significant constant (in earth coord. sys.) and much smaller

time varying (w) component. In body coord. sys. the constant

part becomes time varying because of the rotation of body

coord. sys. relative to earth. The measurement noises were

determined using real sensor data.

The goal was to track an ascending spiral trajectory which

can be achieved by tracking four given signals: u=const and

v=0 velocity components (constant signals), ψ continuously

increasing azimuth angle and Z continuously decreasing

position in earth coord. sys. (this means increasing altitude).

The latter two are ramp-type references. The determinis-

tic wind disturbance in earth coord. sys. is considered as

d = [0.15 0.05 − 0.05]. The stochastic wind component

has ±0.02 extremal values. The weighting of control design

contains the following matrices:

Ru =< 10 10 10 10 > input weight

Rd =< 1e3 1e3 1e3 1e3 1e3 1e3 > disturbance weight

Q2 =< 1e5 1e4 1e4 1e6 > tracking error weight

The controller was designed following the proposed 6

steps (see section II). During the design the MDARE should

be solved with γ iteration using the so called bisection

algorithm as in the continuous time (CT) case. But the

MDARE should be solved using the augmented input matrix

B (see (9)) and this way it considers also the worst case

disturbance as a useful input applicable to stabilize the

system. This can result in an unstable system at the achieved

minimum γ value if one does not generate also the worst case

disturbance as a control input. But in real applications the

generation of worst case disturbance as an input is usually

impossible (such as here). This problem is pointed out also

in [11] for CT minimax control. The solution similar to

the one proposed in [11] is to do γ iteration also for the

stability or instability of φ−BKx2 besides the solvability or

unsolvability of the MDARE. This way larger final gamma

value results, but the controlled system will be stable purely

with the control input (the worst case disturbance is not

needed). Here the achieved gamma value is 3.2825 which

is acceptable for the attenuation of the disturbance residual.

The results are shown in Figures 1, 2 and 3.
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Fig. 1. The tracking of references
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Fig. 2. Reference tracking errors

Two cases were tested, one without stochastic disturbances

(wk) (red lines) and one with them (magenta line). As can

be seen in the Figures the tracking results are satisfactory for

all four references without wk and they are not satisfactory

for velocity components with wk. This can be seen also in

Figure 3 where the noisy trajectory has larger distance from
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Fig. 3. Spatial trajectories of the quadrotor

the reference (blue) one. The tracking of azimuth angle and

altitude is satisfactory both without and with wk. The steady

state azimuth angle error is about −0.11deg which is very

good the altitude error is between ±1cm which is acceptable.

The more decreased performance of the control with wk

is originated in the decreased performance of coupled state

and disturbance estimator in this noisy case. This results in

higher errors for the velocity components because they are

not measured just estimated and this estimated value is used

in the formulation of the tracking error during the control.

The estimator does not have zero estimation error even in the

case without wk and vk because it has unstable (1) poles.

But these are required to achieve satisfactory disturbance

estimates. This means that a false estimate can result in false

tracking so, the improvement and refinement of the state

and disturbance estimator is required to improve the quality

of control. Another aspect can be to avoid tracking of non

measured outputs. But as a conclusion it can be stated that

the algorithm can work well even for time-varying reference

signals so, its further development can be fruitful.

VI. CONCLUSIONS

The paper presents an LQ optimal minimax tracking so-

lution for DT, LTI systems with deterministic and stochastic

disturbances. The solution can be achieved through multi step

design method, where one of the most important step is to

jointly estimate the disturbance with the state vector.

The controller's properties for time-varying references

and disturbances are examined (guarantee of BIBO stability

and finite tracking error in all time steps for ramp-type

references).

The performance of the proposed solution was tested with

a DT quadrotor model. The goal was to track an ascending

spiral trajectory containing constant and ramp-type refer-

ences. Deterministic and stochastic wind disturbances were

considered. The tracking performance is acceptable with

purely deterministic disturbances, but it is not satisfactory

with additional stochastic disturbances.

The work can be improved by robustifying the coupled

disturbance-state estimator.
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