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An Exact Solution for the Infinite Horizon LQ Optimal Output

Tracking Problem

Peter Bauer*, Balazs Kulcsar** and Jozsef Bokor*

Abstract— The paper proposes a new, discrete time LQ
optimal controller synthesis for output tracking over an infinite
horizon. The resulted controller consists of a state feedback
and a feedforward term. The solution requires a one step
ahead prediction of the reference signal. For a smooth enough
reference signal this can be replaced with extrapolation. Here,
the properties for constant reference signals are examined, time
varying references will be covered with another article. The
method guarantees asymptotical stability and zero steady state
tracking error. The elaborated techniques satisfy the separation
principle for an arbitrary deterministic or stochastic state
estimator.

The reference tracking problem for a quadrotor helicopter
is solved by the method. The trajectory tracking control is
successfully applied both with reference signal preview and
extrapolation (considering time varying references also).

Index Terms— output tracking, infinite horizon, discrete time
LQ, constant reference signal

I. INTRODUCTION

LQ optimal state and output tracking control have been

an actively researched field since 1960s. Several exact or ap-

proximate solutions were derived using different approaches.

The existing methods can be classified in two main groups,

such as a priori given reference signals over the known

future horizon and solutions using only instantaneous and

past reference values.

The first group is given as the predictive and preview

techniques. Most of the predictive techniques are summa-

rized in [6], [7] and [9] uses LQ optimal approaches. These

methodologies are out of interest if the reference signal is

unknown.

On the other hand, output tracking problems can be solved

using past and current measurement and state information.

This solution does not consider the future evaluation of the

trajectory.

If the states associated to the reference signal is covered

in the kernel of the A system matrix, the technique is called

tracking via coordinate translation [5]. Usually, this condition

can not be fulfilled.
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Moreover, feedforward control in [5] is very sensitive to

model mismatches and can only exactly determined if the

number of the outputs equals the number of inputs.

LQ Servo (integral) control in [5] requires the implemen-

tation of additional integrators. These new states are related

to the output error terms.

An alternate technique in [1] deals with continuous time

(CT) output tracking, considering linear time varying (LTV)

finite horizon and linear time invariant (LTI) large horizon so-

lutions. The finite horizon solution is rigorously derived and

contains state feedback with an extra forcing function. Both

the LTV and the LTI optimal solutions have to be calculated

backward in time, so these approaches need the reference

signal in advance. Nevertheless, the large horizon solution

is only an approximation, it does not consider infinite time.

The solution assumes to have a constant reference signal. A

discrete time representation is derived for the same problems

in [2].

The large horizon technique proposed in [1] and [2] is

further improved in [10] and [11].

In [10], the CT infinite horizon problem for a constant

reference tracking has been elaborated but asymptotical

tracking can not be guaranteed with.

In [11], the authors derive a system of algebraic equations

based on the initial state of the forcing function (see also [1]).

The backward recursion is avoided, but the structure of the

reference signal has to be fixed (assumed to be polynomial).

In [8] (section 5.8-2) a 2-DOF LQ tracking solution is

derived very similar to the one being presented here, but it re-

quires a square plant and zero initial states. These limitations

are not required in our solution. Another difference is the use

of input (here) instead of input differences which means the

avoidance of integral action in the loop. This simplifies the

resulting control law.

So, the paper suggests an exact and infinite horizon output

tracking solution for DT, LTI systems. The most important

advantage of it is to guarantee asymptotic stability and

zero steady state tracking error for constant reference output

signal. The solution can be given in closed form assuring the

easy implementation. The controller reflects the usual two

degree of freedom structure. If needed, a state estimator can

be added to it, with which it fulfills the separation principle.

Properties for time varying references will be examined in a

future article.

The paper is organized as follows. In section II the prob-

lem is formulated. In section III, a DT, finite horizon output

tracking solution for LTI systems is derived, which is the

basis for the derivation of the infinite horizon case. In section
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IV, the DT, infinite horizon solution is derived from the finite

horizon case, using an additional condition (zero steady state

tracking error). In section V, the properties of the derived

infinite horizon solution for constant reference signals are

stated and proved. Section VI shows a potential application

domain, considering the trajectory tracking control of a

quadrotor helicopter (demonstrating applicability for time

varying references also). Finally, section VII concludes the

paper.

II. PRELIMINARIES

The state dynamic and measurement equations for the

examined class of DT, LTI systems are given by:

xk+1 = Axk +Buk

yk = Cxk
(1)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
p, A ∈ R

n×n, B ∈
R

n×m, C ∈ R
p×n.

Assume that, the pair (A,B) is stabilizable and the pair

(C,A) is detectable.

The solution of the tracking problem depends on the

information that one can gain from the measurement equation

(1). Hence, not every single outputs are tracked. Moreover,

the reference tracking problem can be formulated for a not

directly measured artificial output.

This is the reason to introduce a new output vector yrk
strictly containing which has to be followed. yrk can be

defined separately from yk using another output matrix:

yrk = Crxk (2)

Let the dimension of this output be r ≤ m and so Cr ∈ R
r×n

to assure the exact solution of the tracking problem.

III. THE DT, FINITE HORIZON, LQ OPTIMAL

OUTPUT TRACKING SOLUTION

The goal of this section is to derive a DT finite horizon LQ

optimal output tracking solution for LTI systems considering

(1) and (2). The outcome of the finite horizon LTI solution

will then be used for the derivation of infinite horizon results.

Consider an output reference signal rk ∈ R
r and define the

tracking error as ek = yrk − rk. The cost function to be

minimized is written as:

J (y, e, u) =

=
1

2

N−1∑

k=0

(
yTkQ1yk + eTkQ2ek + uTkRuk

)
+

+
1

2

(
yTNQ1yN + eTNQ2eN

)

(3)

In (3) yk = Cxk which is the orthogonal projection of any

xk to Ker (Cr) if one defines C as in (4).

Ck = I − CT
r

(
CrC

T
r

)−1
Cr (4)

This means that, yk contains the effects of the state space

region not considered in yk and so, this can be weighted

separately with Q1. The consideration of this extra weighting

can improve Discrete Algebraic Riccati Equation (DARE)

solvability properties.

Remark 1: The reason of introducing ȳk is to inject some

complementary information to the solution. The idea behind

can be given as a certain amount of additional information

(extra weight) under the form of a weighted generalized

moment term.

Now defining the reference state as x̃k =

CT
r

(
CrC

T
r

)−1
rk (see [2]) and doing some algebraic

manipulations, the final functional leads back to a state

tracking problem as:

J (x, x̃, u) =

=
1

2

N−1∑

k=0

(

(xk − x̃k)
T
Q (xk − x̃k) + uTkRuk

)

+

+
1

2
(xN − x̃N )

T
Q (xN − x̃N )

(5)

where Q = C
T
Q1C + CT

r Q2Cr and for DARE solvability,

the pair
(
Q1/2, A

)
is required not to have unobservable

modes on the unit circle. The tracking problem can be solved

using Lagrange multiplier method, considering the dynamic

equations in (1) and the initial condition x0 = a (see [3],

[4]). In the following, the further details will be omitted and

only the main results are presented in the sequel.

The structure of the costate variable (Lagrange multiplier)

is given by:

λk = Pkxk + Skx̃k+1 −Qx̃k (6)

Here Q is the weighting matrix defined after (5), Pk and Sk

has to be calculated during controller design. For simplicity

define SRk = Qx̃k − Skx̃k+1 and so λk = Pkxk − SRk.

The boundary conditions can be given at the end of time

horizon:

λN = QxN −Qx̃N ⇒ PN = Q, SN = 0

The final recursive calculation rules and the con-

trol input results as shown in (7) (substituting x̃k =

CT
r

(
CrC

T
r

)−1
rk).

The results show that the finite time tracking control

consists of the well known state feedback control (Pk, Kxk
)

and another part considering the reference signal (SRk or

KQk
and KSk

). This latter part is very similar to the forcing

function applied in [1] for CT cases. Usually, xk+1 is

calculated from uk, therefore rk+1 is needed to be known

at the kth time instant. However, the term rk+2 means the

application of one step preview. Of course, all the parameters

(Pk and SRk) can be calculated only backward (see (7)).

So, the reference signal has to be known over the entire

time horizon. In this case, the single step preview is not a

problem. In the following section the DT infinite horizon

output tracking will be derived using these results.
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PN =Q SRN = QCT
r

(
CrC

T
r

)−1
rN

Pk =Q+ATPk+1A−

−ATPk+1B
[
BTPk+1B +R

]−1
BTPk+1A

SRk =QCT
r

(
CrC

T
r

)−1
rk+

+AT
[
I + Pk+1BR

−1BT
]−1

SRk+1

uk =−Kxk
xk+

+R−1BT
[
I + Pk+1BR

−1BT
]−1

︸ ︷︷ ︸

RB

SRk+1

uk =−Kxk
xk +KQk

rk+1 −KSk
rk+2

where :

Kxk
=R−1BTPk+1

[
I +BR−1BTPk+1

]−1
A

KQk
=RB ·QCT

r

(
CrC

T
r

)−1

KSk
=RB · Sk+1C

T
r

(
CrC

T
r

)−1

(7)

IV. THE DT, INFINITE HORIZON, LQ OPTIMAL

OUTPUT TRACKING SOLUTION

This control solution can be derived from the finite horizon

results considering the k → ∞ limiting case, and forcing the

system to has zero steady state tracking error for constant

reference signal. The infinite horizon is a special case,

because usually u∞ will not be zero. Thus, the functionals

(5) and (3) become infinitely large. However, for constant

reference signals the centralized cost functional (8) with the

resulting control law (15) will be finite and so, the solution

optimal. Here y∞ and u∞ are the steady state values of yk
and uk respectively.

Jc (y, e, u, y∞, u∞) =
1

2

∞∑

k=0

(yTkQ1yk + eTkQ2ek+

+ uTkRuk − yT∞Q1y∞ − uT∞Ru∞)

(8)

The following results will be only partially derived from

the functional. Instead of the direct solution of the infinite

horizon functional, an additional condition (zero steady state

tracking error) will be considered. This leads to an LQ

optimal state feedback stabilization part (the well known

infinite horizon LQ optimal regulator) and an auxiliary term

which is a feedforward part guaranteing zero steady state

tracking error for constant output reference signal. The

following results was derived directly from the finite horizon

case taking k → ∞:

P = Q+ATPA−ATPB
[
BTPB +R

]−1
BTPA

Kx = R−1BTP
[
I +BR−1BTP

]−1
A

KQ = R−1BT
[
I + PBR−1BT

]−1
QCT

(
CCT

)−1

(9)

Now, only KS is further needed to completely determine the

control input. It was derived using the additional condition of

zero steady state tracking error. At first, consider the system

state dynamics using (1), (7) and (9):

xk+1 = Axk −BKxxk +BKQrk+1 −BKSrk+2 (10)

Assume that rk = r∞ = const ∀k ≥ 0. Cases when only

rk+i = r∞ = const ∀i ≥ 1 (reference signal becoming

constant only after a given finite horizon) are also considered,

because this needs only the change of initial state from x(0)
to x(k) (both finite). In this way the x∞ steady state can be

expressed using (10):

x∞ = (A−BKx)x∞ +BKQr∞ −BKSr∞ ⇒

x∞ = [I −A+BKx]
−1

(BKQ −BKS) r∞
(11)

For the calculation of (11) the existence of the inverse

matrix is needed. This needs I − A+ BKx to has nonzero

determinant. However, this determinant is the characteristic

polynomial of the closed–loop system (with LQ optimal Kx

state feedback gain) at z = 1:

ϕc(z) =det (zI −A+BKx) |z=1 =

=det (I −A+BKx) 6= 0
(12)

(12) has to be satisfied in all design, because LQ optimal

control places the poles of the closed–loop system inside the

unit circle. So, the closed–loop will not have any z = 1 pole

and (11) can be calculated.

Now consider the steady state output and reference signals

(using (2) and (11)):

r∞ =y∞ = Crx∞ =

=Cr [I −A+BKx]
−1
B (KQ −KS) r∞

(13)

From (13) the condition for KS will be the following:

Cr [I −A+BKx]
−1
BKS =

=Cr [I −A+BKx]
−1
BKQ − I

FKS = FKQ − I

where F = Cr [I −A+BKx]
−1
B

(14)

Here F will be an r×m matrix because Cr is r×n and B

is n×m (see the output, input and state dimensions after (1)

and (2)). The calculation of KS depends on the dimension

and rank of F . It can be proved that rank(F ) = min(r,m),
so three cases have to be considered:

1) r = m the number of outputs equals the number of

inputs. F is a full rank, quadratic, invertible matrix

KS can be exactly calculated:

KS = KQ − F−1

2) r > m the number of outputs is larger than the number

of inputs. F is a rank m rectangular matrix. Only

least squares optimal solution can be obtained for KS ,

which is obvious, because it is well known that, if the

number of outputs is larger than the number of inputs

one can not control all of them:

KS = KQ −
(
FTF

)−1
FT
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So, in this case the stated tracking problem can not

be solved.

3) r < m the number of outputs is smaller than the

number of inputs. F is a rank r rectangular matrix.

An exact solution can be obtained using the Moore–

Penrose pseudoinverse (pinv) of F :

KS = KQ − pinv (F )

In this way, the infinite horizon control input can be

constructed using the calculated Kx, KQ and KS gains:

uk = −Kxxk +KQrk+1 −KSrk+2 (15)

Now examine the structure of the derived control law

considering the state dynamic equation (10) (M depends on

the size of F , it can be F−1,
(
FTF

)−1
FT or pinv (F )) :

xk+1 = Axk −BKxxk +BKQrk+1−

−B (KQ −M) rk+2

xk+1 = (A−BKx)xk
︸ ︷︷ ︸

Simple state feedback

+BMrk+2
︸ ︷︷ ︸

P term

−

−BKQ (rk+2 − rk+1)
︸ ︷︷ ︸

D term

(16)

(16) shows that, the simple state feedback is completed with

a P and a D term for the reference signal.

However, the application of control input (15) needs to

know not only rk+1 but rk+2 also, so needs one step preview.

This can cause problems in case of real time generated

reference inputs. This problem can be solved applying linear

extrapolation:

rk+2 = −rk + 2rk+1

uk = −Kxxk +KSrk + (KQ − 2KS) rk+1

(17)

For smooth reference signals (usually real reference sig-

nals are smooth) this provides the same good tracking

performance (as the one step preview) without significant

increase in input energy. For step-like reference signals the

tracking is also good, but significant increase occurs in input

energy.

In the next section asymptotic stability, asymptotically

zero tracking error and the satisfaction of the separation

principle will be proven. In the following φ = [A−BKx]
will be used to simplify the expressions.

V. STATEMENT AND PROOF OF THE PROPERTIES

OF THE DERIVED INFINITE HORIZON CONTROL

METHOD

Theorem 1 (Guaranteed asymptotic stability): The

proposed infinite horizon output tracking solutions (15)

and (17) guarantee asymptotic stability for finite, constant,

output reference signals.

Proof: The proof can be done in a constructive way.

The simple state feedback obtained as LQ optimal has to

be stable, so only the effect of the reference signal is

questionable. Start with time instant 0 and assume that

rk = r∞ = const ∀k ≥ 1. In this way, one gets from

(16):

x1 = φx0 +BMr∞ (18)

both for (15) or (17) Considering (18) and the state equation,

the further states result as follows:

x2 = φ2x0 + φBMr∞ +BMr∞

x3 = φ3x0 + φ2BMr∞ + φBMr∞ +BMr∞

...

xn = φnx0 +

[
n−1∑

m=0

φm

]

BMr∞

(19)

To decide about asymptotic stability one has to examine

n → ∞. φ is the closed–loop system matrix which has all

of its eigenvalues inside the unit circle. This means that it

is a nilpotent matrix and its power achieves zero if n→ ∞.

So, one gets:

x∞ = lim
n→∞

[
n−1∑

m=0

φm

]

BMr∞ (20)

In (20) the limes of a matrix geometric series has to be

calculated. Such series converges if its matrix has all of its

eigenvalues inside the unit circle. Now this is the case, so

considering the limit of the convergent series the steady state

results as:

x∞ = (I − φ)
−1
BMr∞ (21)

The (I − φ)
−1

, B and M matrices are finite, so, for

finite r∞ x∞ is finite. This means that, the system is

asymptotically stable for finite, constant reference signals.

Theorem 2 (Asymptotically zero tracking error): The

proposed infinite horizon output tracking solutions (15) and

(17) guarantee asymptotically zero tracking error for finite,

constant, output reference signals if the number of outputs

is lower or equal than the number of inputs

Proof: Consider (21) and (2):

e∞ =Crx∞ − r∞ =

Cr (I − φ)
−1
BMr∞ − r∞ = FMr∞ − r∞

(22)

The value of FM for the stated case is I so, zero tracking

error results.

In the other case (dim(yrk) > dim(uk)) usually

F
(
FTF

)−1
FT 6= I because only a least squares optimal

solution was possible. The steady state tracking error in this

case will be:

e∞ =
{

F
(
FTF

)−1
FT − I

}

r∞ (23)
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Finally, one has to examine the effect of state estimation,

because usually all the states of the system can not be

measured. This leads to the following theorem:

Theorem 3 (Satisfaction of the separation principle):

The proposed infinite horizon output tracking solutions (15)

and (17) guarantee the satisfaction of separation principle

for both constant and time varying reference signals and for

any type of state estimator

Proof:

The equations of the DT actual state estimator are the fol-

lowing (it can be either deterministic or stochastic estimator):

x̂k = x̄k + Lo (yk − Cx̄k)

x̄k = Ax̂k−1 +Buk−1

xek+1 = x̂k+1 − xk+1 = (I − LoC)Ax
e
k

(24)

Here x̂k is the estimated state and yk is the measured out-

put (see (1)). The state dynamic equations of the augmented

system can be constructed considering (10) and (24):

[
xk+1

xek+1

]

=

Aa

︷ ︸︸ ︷
[
A−BKx −BKx

0 (I − LoC)A

] [
xk
xek

]

+

[
BKQrk+1 −BKSrk+2

0

]
(25)

From Aa the poles of the augmented

system can be calculated as det (zI −Aa) =
det (zI −A+BKx) det (zI −A+ALoC) = 0 and

neither the reference signal, nor the system states affect the

dynamic of the estimation error. So, the separation principle

is satisfied.

Summarizing the results, the derived controller is asymp-

totically stable, can guarantee zero steady state tracking error

and can be independently completed with state estimation.

In the following section an application example consider-

ing the trajectory tracking control of a quadrotor helicopter

will be introduced, examining both the one step preview and

the extrapolation cases.

VI. APPLICATION EXAMPLES WITH ONE STEP

PREVIEW AND EXTRAPOLATION

The considered quadrotor model is obtained from a

joint project published in [12]. In [13] a nonlinear Matlab

Simulink model of the quadrotor helicopter was constructed.

In [14] a CT, LTI model is derived from this, linearizing the

nonlinear model in hovering.

The states, measured outputs and inputs of the resulting

model are the following:

States: x=[vertical position in earth coord. sys. (Z), quadrotor

velocity components in body coord. sys. (u v w), quadrotor

angular velocity components in body coord. sys. (P Q R),

Euler angels (ϕ θ ψ)]

Measured outputs: y=[accelerations in body coord. sys. (

u̇ v̇ ẇ), measured altitude (h=-z assuming flat ground),

quadrotor angular velocity components in body coord. sys.

(P Q R), quadrotor orientation (ψ)].

Inputs: u=[pitching command δpitch, rolling command δroll,

yawing command δyaw, ascending / descending command

δasc/desc]

This CT model was controllable and observable and it

was transformed into a DT, LTI model using zero order hold

discretization, after defining the sample time. The sample

time was defined considering the bandwidth of the open–

loop system.

The open–loop bandwidth was approximately ωb = 4 rad
sec .

The closed–loop bandwidth can be an order of magnitude

less then this (see [4] p. 485), and the sampling frequency

has to be selected between six and forty times the closed–

loop bandwidth (see also [4] p. 485). So, finally five times

the open–loop bandwidth was selected which resulted in the

following sampling frequency and time: ωs = 20 rad
sec T =

0.05sec The discretization was done considering this sam-

pling time. The resulted DT model is also controllable and

observable. The developed algorithm with one step preview

and with extrapolation was applied on this model.

The weighting of the states not included in output tracking

was determined using the method of inverse squares and

considering the required limits of the states. The goal was

to remain in the linear range around hovering state, which

can possibly provide that, the designed linear controller can

work also on the nonlinear helicopter.

The considered upper limits were the following:

0.5 m/sec for u, v, w velocity components

2 deg/sec for P, Q, R angular velocity components

5 deg for Euler angles

100 for input commands
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Fig. 1. Velocity, altitude and yaw angle tracking

Of course, the weighting is sometimes different, if it is

needed or possible. The other weights were selected by trial

and error. The measurability of all states was assumed in all

cases (so the state estimator was not implemented).

The results can be qualitatively compared using the ap-

proximate two norms of control inputs and tracking errors
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Fig. 2. Velocity, altitude and yaw angle tracking errors

TABLE I

TWO NORMS OF COMMANDS AND ERRORS

Two norm of: One step preview Extrapolation

δpitch 0.0934 0.1277

δroll 3e-16 3.93e-16

δyaw 4.1056 4.1465

δasc/desc 0.7076 0.7165

uerror 0.0743 0.0745

verror 1.12e-14 1.12e-14

zerror 0.0432 0.0432

ψerror 0.0962 0.0962

(the approximate two norms were calculated using trapezoid

integration rule until the end of simulation (not until infin-

ity!)).

The reference signals were the velocity components (u, v)

(becoming constant after a time), the vertical position (Z)

and the orientation (ψ) (ramp-type signals),

The weighting matrices both for one step preview and

extrapolation were:

Q1 =< 0 0 0 1 820 820 50 135 135 0 >,

Q2 =< 1000 100 100 10000 >,

R=< 1e-6 1e-6 1e-6 1e-6 >

The two norm results are summarized in table I. The de-

veloped control strategy works well even for the ramp-type

references. This is a very promising result. The extrapolation

case uses a bit more control energy (meanwhile it gives

the same good tracking errors) but the difference from one

step preview is not significant. So, the one step preview and

extrapolation cases are almost exactly the same, which means

that the use of extrapolation is a suitable solution (for smooth

signals applied here). The tracking results with extrapolation

are shown in Fig. 1. The tracking errors are all acceptable

(see Fig. 2) so, the tracking performance is very good.

VII. CONCLUSIONS

The paper suggests an optimal output tracking control

method for DT LTI systems and for constant reference sig-

nals such that the controller assures asymptotical stability and

zero tracking error. It also satisfies the separation principle.

At first, the finite horizon solution was derived used

as a basis for deriving the infinite horizon solution. The

resulted new control method guarantees asymptotic stability

and asymptotically zero tracking error, for constant reference

outputs. The number of the outputs must be inferior or

equal to the dimension of the input. In case of a state

estimator, the separation principle is satisfied. The dynamics

of the state estimator is completely independent from the

controlled system states and from the reference signal (but

of course, it depends from the measured outputs of the

system). Originally, the method uses a one step preview of

the reference signal, but for smooth signals an extrapolation

can be used instead, allowing the realtime application of the

method. A quadrotor trajectory tracking task has been solved

in order to emphasize the importance of the above solution.

The extrapolation of the reference signal has been proven

to successfully replace the one step ahead prediction of the

reference trajectory. What is more, not only the constant, but

also the ramp-type reference signals are well tracked.

So, the need to investigate the properties for time varying

references arises. Ramp-type, bounded, l1 and l2 signals

should all have to be considered.

Further investigation can be done upon the robustness of

the given method such as robustness under model uncertainty

and disturbance. Another question is the performance degra-

dation of the closed loop with jointly applied state estimator.
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