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ABSTRACT: CNN models are introduced to analyze and explain the
human early vision color perception and some of the visual
illusions. CNN model of Horn’s algorithm is shown, and a
new lightness determination method is introduced. CNN
models for the Zöllner, the Café Wall, the Poggendorf, the
Brightness, and the Face-Vase illusion are also introduced.

1. Introduction

Cellular Neural Networks (CNNs) show strong resemblance with the biological visual systems. It
is not surprising that several CNN models were produced for unraveling the processing some
parts of the vertebrate visual pathway [7,9,12,13,14]. Most of these works was devoted to
examine the early vision stages (retina) [7,9,12,14], and some of them for further parts of the
visual pathway (LGN, cortex) [7,13]. The first CNN models of the color vision [5,8] reflected the
basic neuromorphic models [11]. In this paper we apply this knowledge to prove the usefulness
of these models in the understanding of color vision and in the explanation some of the visual
illusions.

Determination of colors in a complex scene with electro-optical devices does not seem  to be
difficult. However, it is. It is almost as difficult as the measurement of flavors of a meal with
electro-chemical devices. The reason is in both case, that these phenomena are based on the
mainly unknown properties of the human perception. Land demonstrated in his famous
experiment the ambiguousness of the human color perception [1,2]. He also introduced a model
framework (retinex theory), which can describe the human color perception. Main component of
this framework is the lightness determination, what he called “retinex computation”. In the first
part of the paper we show different lightness determination models. These CNN based
neuromorphic models might form the  basis of a real-time color measurement unit, which can
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determine the object’s color in arbitrary environments. This kind of measuring devices do not
exist today, since the precise model of the human color perception is not achieved yet.

For the sake of better understanding of human visual information processing, it is necessary to
be able to reproduce or at least qualitatively explain, not only the common mechanisms, but also
some of the peculiar performance of the visual system also. CNN seems to be a natural
framework for these experiments due to its special retinotopical structure. Within this
framework, we can give bottom-up explanations for the majority of visual illusions. Relatively
simple CNN structures can be given which are able to simulate the vertebrate visual information
processing. These CNN structures are motivated by known inner representation of the visual
inputs and their interactions. In the second part of this paper, we demonstrate that some of these
inner representations can be responsible for some types of visual illusions. It is not fully
understood what kind of interactions refine the different representations within the visual cortex.
Building a more comprehensive model of the visual system can lead better image segmentation
algorithms.  With these experiment we prove that most of the visual illusion are generated at the
early vision level and not in the cognitive level.

In this paper first, we refresh Land’s experiment [1] in Section 2, then the retinex framework
[1,2] is shown in Section 3. In Section 4, Horn’s lightness determination algorithm [3] and its
CNN model is introduced. Then, a new neuromorphic CNN based lightness determination model
is offered in Section 5. Section 6 we quickly overview the previous studies on the CNN illusion
models. Then, in Section 7 CNN based explanations of some well known visual illusions are
introduced. Finally, in Section 8 we give the conclusion of our results.

2. Land’s Experiments

In his famous experiments Land showed [1,2] that the received RGB triplet from a color
object sometimes does not show definite  correlation with the perceived natural color. He
showed, that under different illumination conditions, the received triplets from the objects with
totally different colors can be the same, however, human observer still can distinguish them.

In his experimental setup, there was a large laboratory display (he titled it as “Mondrian” after
the great painter), utilizing about 100 colored papers. A paper of a given color appeared many
times in different positions of the display, each time having different size and shape, and each
time being surrounded by a different set of other colored papers. The Mondrian was illuminated
by three independently controllable monochromatic light sources: with a long-wave, a middle-
wave, and a short-wave. From now, we reserve the name of the colors for those situation, when a
human observer reports the chromatic property of an object. In all other cases we will talk about
bandwidths or bandwidth distributions. The bandwidth of the light sources were appropriate
roughly to the three existing visual pigments. A telescopic photometer was placed next to the
human observer. It received and measured the radiation from a very small area of the display.
The area was much smaller, than a colored paper piece. The experimental setup can be seen in
Figure 1.
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Figure 1. The experimental setup of Land’s experiments.

Four different papers were chosen on the display: a yellow, a white, a green, and a blue one.
The telescope was pointed first to the yellow paper. The short-wave and the middle-wave
illuminators were switched off, and the whole Mondrian was illuminated with the long-wave
light source. The illuminator was tuned until the meter read exactly “one” (0.1W/Sr2/m2). The
long-wave illuminator was turned off and then middle-wave illuminator was turned on. It was
adjusted until the meter reads the same value as before. Finally, it was done for the third
projector as well. This ensured, that the amounts of long-wave, middle-wave, and short-wave
energy reaching the meter from that small patch are equal, when all the illumination sources are
on. If a true color digital image would have been taken from this scene (with all the three
illuminators on) the same RGB pixel value triplet (1,1,1) would describe the color of that
particular location. In the forthcoming sections we will deal with these triplets.

When all the three illuminators were switched on, for a human observer  the yellow paper
looks yellow. Then, the attention was turned to the white paper, and exactly the same adjustment
was done on the light sources. After turning all the illuminators on, one can expect, that the white
paper will appear yellow, because the same radiation distribution is reflected  from it  as in the
previous case. However, it appeared to be white! Then, the same was repeated with the green and
the blue papers, and the green paper’s color was reported as green, the blue was reported as blue.

In another experiment of him [1],  he used the same experimental setup, and used thefour
different papers as well. First he focus  the attention to the yellow paper and tuned the projectors
till it  reads one-one-one. Then asked the human observer to report the color of all the four
selected papers. The observer perceivedthe yellow paper as yellow, the white one as white, the
green one as green, and so the blue one as blue. He pointed the meter on the white paper and
tuned the projectors again, tillthe meter read one-one-one. After switching on all the three light
sources, the human observer reported the colors of all the papers correctly as well. Finally, he did
the same experiment with the green and the blue papers, and the human observer still could
report correctly the colors, against the fact that the illumination conditions were drastically
changingduring the experiments. This phenomenon is called color constancy.
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3. The structure of Land’s retinex model

Knowing Land’s results one can ask: If the reflected wavelength composition do not, than
what is responsible for the colors of an object? Physically, the reflectance coefficient is the only
measurable illumination independent (but certainly wavelength dependent) constant. This
property of an object is called lightness in a monochromatic environment. This fact seems to be
responsible for the natural color of objects. The reflectance coefficient can be calculated using
the following form:

R E
E

R

I
λ

λ

λ

= (1)

where: Rλ is the reflectance coefficient, ERλ is the energy of the reflected radiation, and
EIλ  is the energy of the illumination at a given wavelength (λ). If RL, RM, RS, (the reflectance
coefficients in the long, middle, and short wave regions) are known, the color of an object is
assumed to be known. Color scanners exactly do this. They use narrow bandwidth illumination
sources with known energy, and measure the energy of the reflected light. The triplets they get in
this way (RL, RM, RS) defines the colors.

Land proposed the retinex model which is a three channel model for color identification. Each
channel deals with a certain bandwidth (Long, Middle, Short; LMS) without interaction. An
estimated reflectance (or lightness) map of the scene is calculated in each channel. Figure 2
shows the structure of Land’s retinex model. The incoming image is split to three individual
monochromatic maps. In all channels the same retinex computation (lightness determination) is
done.

As we saw in the previous section, the LMS triplets of the incoming intensity image do not
define unequivocally the colors. Land stated in [1,2] that with appropriate retinex processing
methods the LMS triplets of the processed image define the colors. The triplets can be visualized
in the LMS space. When the triplets from the incoming image are displayed in this chart, the dots
are shuffled and dots belonging to the same colors usually do not form separated groups. But
when the triplets from the processed images are displayed, the dots corresponding to particular
colors form groups, and the different color groups are clearly separated. We will see this kind of
charts in Sections 5.

Land introduced some methods for retinex computations [1,2], but those are not very feasible
from the biological aspect, and on the other hand those work well on those type of images which
contain large unicolored areas separated by sharp edges. In the next sections we show two retinex
(lightness) computational methods.
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Figure 2. The structure of Land’s tri-channel retinex model.

4. Horn’s model for determining lightness

In this section as an introduction to the lightness determination method first we show Land’s
1D continuous space method [3]. Then we show Horn’s 2D method, and finally its CNN model
is introduced.

4.1 Land’s 1D continuous space method for determining lightness
Land invented a simple method for separating the image components in one dimension.

(Recall that we would like to know Rλ , but we now only E RIλ λ .) First he took logarithms to
convert the product of the illumination and the reflectance into sum:

E E R E E RR I R Iλ λ λ λ λ λ= = +log log log (2)

This is followed by differentiation. The derivative will be the sum of the derivatives of the
two components. The edges will produce sharp pulses of area proportional to the intensity steps
between the regions, while the spatial variation of illumination will produce only finite values
everywhere. If the finite values are discarded with a thresholding, the derivatives of the lightness
(reflectance map) remains. This can be restored by integration. Figure 3 shows the steps of the
method.
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Figure 3. Processing steps in Land’s 1D lightness determination method. The illumination on
the original image changes slowly, and the edges of the areas causes the steps in the
function. After the derivation, the steps became pulses (indicated with arrows). Then,
the small components are discarded by a threshold operation. Finally, the lightness
is calculated by integrating the pulses.

4.2 Horn’s 2D method for determining lightness
Horn generalized Land’s 1D method [3]. He used hexagonal pixel representation of an image

(2D signal). He replaced the differentiation operator with the Laplace operator. The Laplace
operator was calculated with the following hexagonal convolution kernel:

-1/6-1/6

-1/61-1/6

-1/6 -1/6
(3)

The Laplace operator was followed by the thresholding. It was simple so far, but the inverse
Laplace transformation is not a trivial operation. For a well defined hexagonal pixel array with
well defined boundary conditions it can be done with matrix inversion. But while the original
matrix (which calculated the Laplace) was a sparse matrix with 1s in the diagonal and -1/6
scattered around, the inverted matrix is not sparse any more [3]. This makes the direct matrix
inversion method not very feasible in the retina, because there are mostly local interconnections,
which can be described with a sparse matrix.

To overcome this problem, Horn introduced an iterative method for computing the inverse
transformation [3]. This applies local interconnections between linear summing devices only.
The schematic of his structure can be seen in Figure 4.
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Figure 4. The schematic of Horn’s model using summing and thresholding elements. The
feedforward structure calculates the Laplace operator, while the feedback loop
structure calculates the inverse Laplace operation. Note, that for the shake of clarity
of the figure not all the feedback and feedforward interconnections are indicated.

The convolution kernel of the kernel loop is as follows:

1/61/6

1/601/6

1/6 1/6
(4)

4.3 The CNN implementation of Horn’s model
If we analyze Horn’s model (Figure 4) we find its structure to be similar to the CNN. The

feedforward part can be implemented with a single B template, the threshold with a nonlinear
element, and the feedback loop with an A template. Though Horn suggested the hexagonal
arrangement, here we implement the model on a rectangular structure. The two layer CNN can be
seen in Figure 5.

input of the
first layer

 A22

B21

A21
output of the

first layer

output of the
second layer

Figure 5. The proposed CNN structure for implementing Horn’s model. The first and the
second grid represents the input and the output of the first layer, while the third grid
stands for the output of the second layer.

The templates are as follows:
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B11 calculates the Laplace operator, and transfers the result into the output of the first layer.
The output of the first layer is connected to the second layer through nonlinear a function A21.
The inverse Laplace function is calculated on the second layer A22. The central element of A22 is
+1 for eliminating effect of the resistor in the CNN cell. (ide nem kell A22(2,2)=1! Latszik is a
rekonstrukcion hogy nem pontos mert kicsit kiemelte a szineket… Persze nem igazan lenyeges a
tartalom szempontjabol! � …)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Example for Horn’s lightness determination model. (a) is the original test image
(before illumination) and (b) is the illumination pattern. (c) is the illuminated image,
as the human observer perceives it. This is the input of the three channel retinex
model. (d) is the result. It is clearly seen on (d), that the method restored the yellow
square, which became green due to the chromatic illumination on (c). Figures (e)-(h)
shows the processing steps in a single channel. (e) is the short monochromatic
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channel of the original image (before illumination). (f) is the illuminated image. (g)
is the result of the Laplace operator. (h) is the final result.

For illustrating the method, we show a simple example. In Figure 6a a color image given
( Rλ ). It is illuminated with a light source. Figure 6b shows the chroma distribution of the
illumination in space ( EIλ ). Figure 6c shows the illuminated image how a human observer would
perceive ( E RIλ λ ) it. This is the input of algorithm. It is split into three monochromatic channels.
We applied the described CNN method on each channel, and combined the monochromatic maps
again (Figure 6d). Due to the greenish illumination, the yellow square turned to greenish yellow
(Figure 6c), but it is yellow again in the processed image (Figure 6d). Figure 6(e)-(h) shows the
processing steps in a single channel.

5. A CNN based neuromorphic lightness determination method

The basis of the color vision is the calculation (or estimation) of the lightness (reflectance
map) of the long, medium , and short wavelength sensitive channels. The lightness can be
calculated by the division of the reflected light and the illumination (1). But for a human observer
two problems arise. First of all, the human eye can perceive (measure) the energy of the reflected
light ( E E RR Iλ λ λ= ) only, but cannot perceive the energy of the illumination. (For measuring the
illumination energy, the sensor should be located on the surface of the object!) The other problem
is, that our neurons can be very good in the  addition and subtraction of  signals, but they cannot
solve easily the division..

Our neuromorphic lightness computation model finds solution for both problems. The model
estimates the overall illumination energy by large scale averaging of the visual scene. The lack of
division can be overcome by using logarithmic input-outputcharacteristics (like our photo-
sensitive cones do), and then applying  subtraction. The model contains three stages: the input
layer with logarithmic characteristics, the illumination estimator, and the difference calculator.
The operation of the model can be traced along in Figure 7. E RIλ λ  is the incoming image. Rλ is
the spatial reflectance map (lightness) distribution at the given wavelength. EIλ  is the energy of
the illumination, which changes slowly in space. The sensory layer captures the images, and does
a pixel-wise logarithmic transformation on them. The illumination estimator calculates the
average in a large neighborhood. The spatial averaging of a 2D signal is denoted by a horizontal
bar above the term. log logE EI Iλ λ≅ , because EIλ changes slowly in space.

In the nature EIλ usually changes slowly. But there are some important cases, when the
chromatic distribution of the illumination changes rapidly. Consider a slide show. The human
observer can see different colors on the screen, however, the screen is a large, flat, white  object
without any Rλ changes. How can it happen? What happens with the Color constancy in this
situation? The rapid chromatic changes in the illumination cheat the eye, which is not prepared
for them. It shows, that the color constancy is true only under certain circumstances. These
circumstances are usual, and frequently occursin natural environments. Our neuromorphic model
deals only with those situations, when the color constancy is valid.
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 -b
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Figure 7. The flow-chart of the process in a single monochromatic channel.

At the end of the process, the weighted subtraction is calculated (Figure 7). Parameters a and
b play very important role in the model. For example, if we choose a=b, than we can get rid of
the EIλ term, hence we can eliminate the disturbing effect of the illumination. But than, the first
term will carry visual information only, which is not satisfactory. Consider the following
example: someone is seated in a closed room with red walls. He or she cannot see anything else,
just the red wall everywhere. In this case, the first term becomes zero, because the Rλ is constant
in space, hence, log logR Rλ λ= , which results, that no information will be transferred towards
the brain. However, the observer will see red color. So, it is better to chose a≠b. If we choose a a
bit greater than b, our model will separate the colors robustly. (a<b would lead to inversion,
because with the increasing illumination the channel response would decrease.)

Illumination
estimator layer

(horizontal cells)

Output layer
(bipolar cells)

Sensory layer
(cone cells)

A22
B21

B32

B31

Figure 8. The CNN implementation of the proposed neuromorphic lightness determination
method.

We implemented our lightness determination algorithm on a 3 layer CNN structure (Figure 8).
The first layer is the sensory layer with logarithmic input characteristics. This represents the cone
cell layer of the retina. The second layer which stands for the horizontal cells, is a low density
layer. It calculates the spatial averaging. The third layer which corresponds to the bipolar cell
layer of the retina calculates the subtraction. We used the following templates to implement the
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process: (Minek kell ilyen nagy szomszedsag amikor ugy  is feedback template, legfeljebb tovabb
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We evaluated our model by reproducing Land’s second experiment. The input images were
the same ‘Mondrian’ displays (Figure 1) under different illumination conditions. The
illumination conditions are the same as it was previously described in Section 2. We picked up
intensity value triplets from the input image from 4 different locations (yellow, white, green, and
blue areas) under the four illumination conditions. The measured triplet values can be found in
Table 1. Figure 9a shows the triplets in a 3D plot. As it can be seen, the points belonging to the
same colors form completely overlapping sets.

Yellow White Green Blue

Illumination 1 (1; 1; 1) (1.13; 1.33; 4.78) (0.34; 0.64; 1.56) (0.21; 0.27; 3.13)

Illumination 2 (0.87; 0.75; 0.21) (1; 1; 1) (0.3; 0.48; 0.33) (0.19; 0.23; 0.66)

Illumination 3 (3.84; 1.54; 0.63) (3.97; 2.06; 3.05) (1; 1; 1) (0.76; 0.48; 2.03)

Illumination 4 (4.56; 3.21; 0.31) (5.21; 4.29; 1.5) (1.17; 1.36; 1.16) (1; 1; 1)

Table 1. Triplets received from 4 different locations of the image ( E E RR Iλ λ λ= ) under
different illumination conditions. Columns contain incoming triplets coming the
same location of the ‘Mondrian’ under different illumination conditions.

After the images were processed, we picked up triplets from the same locations. The triplets
can be found in Table 2. Figure 9b shows the 3D plot of the processed triplets. As it can be seen,
the colors are robustly separated.
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Yellow White Green Blue

Illumination 1 (1.32; 1.37; 1.03) (1.34; 1.44; 1.55) (1.08; 1.28; 1.22) (0.84; 0.99; 1.4)

Illumination 2 (1.30; 1.36; 0.94) (1.33; 1.42; 1.45) (1.07; 1.27; 1.13) (0.84; 0.96; 1.31)

Illumination 3 (1.38; 1.4; 1) (1.4; 1.47; 1.52) (1.14; 1.32; 1.2) (0.91; 1.01; 1.38)

Illumination 4 (1.41; 1.44; 0.96) (1.44; 1.52; 1.47) (1.17; 1.36; 1.16) (0.94; 1.05; 1.34)

Table 2. The processed triplets from the same locations.

   
(a) (b)

Figure 9. The 3D plot of the triplets from the input images (a), and the 3D plot of triplets from
the processed images from the same location (b).  While the colors are coded
ambiguously on the raw image, they are well separated after the processing.

6. Previous studies on CNN based visual illusion models

The understanding and the reproduction of visual illusions were always a challenge for the
information processing theorists [16, 17, 18, 19]. Cellular Neural Networks seem to be adequate
as a conceptual framework for modeling these effects. However, there were only a few attempts
to model different illusions within this paradigm [7,10]. There were preliminary works presented
about modeling the well-known Müller-Lyer and Herring grid illusions (Figure 10a,b), in which
the authors used modified CNN retina models. Later nice results arose about the CNN simulation
of Kanizsa Illusory Contour and Angular Location Illusions (Figure 10c,d).
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(a) (b) (c) (d)
Figure 10. Some illusions, which were already modeled with CNN.

Here we assumes that the vast majority of the visual illusions occur due to the alteration of the
inner representation of the visual input by the interaction of the visual system components. The
reproduction of different type of illusions do not necessarily require distinct representations. Here
we will show, that a large group of illusion can be explained by akin mechanisms, that is by the
same representation of the input or the same interaction between similar representations.

7. CNN models of some well-known Visual illusions

7.1  Zöllner illusion
Figure 11 shows the Zöllner illusion. The lines are parallel, but the crossing lines cause them
apperaing  to diverge.

To understand this phenomenon, one has to carefully examine what kind of effects are caused
by the crossing lines. The most important primary effect is that small black patches appear at the
acute angles, and no changes happen at the obtuse angles. This can even be seen by the naked eye
(Figure. 11a.). The small black patches are exaggerated in Figure 11b. We consider, that in a
higher level of our visual system the crossing lines are erased, but the patches still remain at the
end of the line pieces (Figure 11c.).

The patches at the end of the line pieces fool the brain when it computes their orientation. It
can be imagined in the following way: the ends of the line pieces seem to be moved towards the
patches which cause them to appear being rotated. Figure 11d shows an exaggerated draw, which
illustrate what wesee.

   
(a) (b) (c) (d)

Figure 11. The original Zöllner illusion (a). The magnified patches at the acute angles (b). The
cut line pieces with the patches (c). The magnified distortion caused by the crossing
lines (d).
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We created structural-strategy model for this illusion. The appearance of the patches is
derived from the structure of the retina, while the rotation effect is explained by the behavior of
the orientation selective cells in the cortex [11].

The appearance of the patches is the result of a blurring wich can be find in the retina [11].
This can be modeled by the following feed forward template:

[ ]A B I= =
�
�
�
�
�

�
�
�
�
�

=0

0 023 0 023 0 023 0 023 0 023
0 023 0 053 0 055 0 053 0 023
0 023 0 055 0 2 0 055 0 023
0 023 0 053 0 055 0 053 0 023
0 023 0 023 0 023 0 023 0 023

0,

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

,         (7)

(The input can be seen in Figure 12a, and the output can be seen in Figure 12b.)

(a) (b) (c)

(d) (e) (f)
Figure 12. The original test image (a). The blurred image (b). The result of the threshold

function (c). Erasing the vertical crossing lines (d). Erasing the horizontal crossing
lines (e). The line pieces with the patches (f).

The result of this template is a gray-scale image. To get a black-and-white image again, we
used this threshold template.

[ ] [ ]A B I= = =2 0 0 3, , .      (8)

(The initial state can be seen in Figure 12b, the output in Figure 12c.) The following three
templates erase the crossing lines: (ha itt vagni akarsz akkor talan eleg az, ha azt mondod, hogy
az orientacio erzekeny sejteken egy megvaltozott amplitudoeloszlast okoz ami elvezet az
illuziohoz.)

[ ] [ ]A B I
T

= = − − − − − − = −2 0 2 0 2 0 2 1 0 2 0 2 0 2 13, . . . . . . , .      (9)

(The input and the initial state are shown in Figure 12c, the output in Figure 12d.)
[ ] [ ]A B I= = − − − − − − = −2 0 2 0 2 0 2 1 0 2 0 2 0 2 13, . . . . . . , .      (10)

(The input and the initial state are shown Figure 12d, the output in Figure 12e.)
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[ ]A B I= �
�

�
�

= =
0 1 0
1 2 1
0 1 0

0 0, ,      (11)

(The initial state is shown Figure 12e, the output in Figure 12f.) For computing the
orientation, there are orientation selective cells in the cortex [11]. The receptive field
organization of the cells can be seen in Figure 13. Here we model a vertically oriented,
orientation selective cortical cell type with the following template:

[ ]A B= =

− − − −
− − − −
− − − −
− − − −
− − − −
− − − −
− −

0

0 095 0 048 0 071 014 0 071 0 048 0 095
0 095 0 048 0 071 014 0 071 0 048 0 095
0 095 0 048 0 071 014 0 071 0 048 0 095
0 095 0 048 0 071 014 0 071 0 048 0 095
0 095 0 048 0 071 014 0 071 0 048 0 095
0 095 0 048 0 071 014 0 071 0 048 0 095
0 095 0 048 0 071 014 0 071

,

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . − −

�
�
�
�
�
�
�

�
�
�
�
�
�
�

=

0 048 0 095

0

. .

, I (12)

The inputs can be seen in Figure 14. The orientation of the line piece in the receptive field of a
cell determines the output value of it. We tested the modeled orientation selective cell with three
different images (Figure 14). Two of them were line pieces with patches at the ends (from
Figure 12f), and the third was a same sized and oriented line piece without patches. This third
one is considered as a reference image (Figure 14). The values of the responses are also indicated
in Figure 14. According to the receptive field organization of the modeled cell type, the bigger
the slope of the line in the receptive field, the greater the response is. Note that the responses are
not proportional with the deviations. It is not surprising, because the way, how the cell computes
the orientation is non-linear.

- - + + + - -
- - + + + - -
- - + + + - -
- - + + + - -
- - + + + - -
- - + + + - -
- - + + + - -

Figure 13. The receptive field organization of the modeled orientation selective cortical cell
type.

input image:

cell response: 0.24 0.08 0.19
Figure 14. The images in the receptive field of the modeled orientation selective cells, and the

response of them.

7.2 Brightness illusion
Figure 15a shows a basic  brightness illusion. The two inner squares have the same brightness,
but the outer different brightness of the frames cause us to judge them as different. This illusion
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is a consequence of the lightness determination algorithm described in Section 5. The structure
and templates was shown in Figure 8. If we put the original image (Figure 15a) to the sensory
layer of the structure in Figure 8, we got a blurred image on the middle layer (Figure 15b), and
got the final result (Figure 15c) on the third layer. It can be seen, that the inner squares on Figure
15c have truly different brightness, as the human observer really perceives it.

    

(a) (b) (c)
Figure 15. The Brightness illusion. (a): the original image; (b) the blurred image; (c) the final

result

(Talan ide rakhatnank ugyan ezekkel a templatekkel egy Mach band illuziot azt hiszem ide illik es
mukodik is! Ha kell megcsinalom…).

7.3 Cafe Wall illusion
In the vertebrate retinas the ganglion cells have center-surround antagonistic receptive fields. It
means that the stimulation of the receptive field center of the neuron can be inhibited by the
appropriate stimulation of the surround. This arrangement of the representation can explain the
Cafe Wall illusion (Figure 16) [15]. On this illusion we can perceive convergence of the
otherwise parallel edges of the tiles. The illusion strength depends on the thickness and
brightness of the mortar and on the shift between the tiles.
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( a ) ( c ) ( d )

( b ) ( e ) ( f )

Th e la rge va lu es  on  th e -
30° or ien ta tion  m a p
in dica te th a t  th e obs erved
lin es  a re s kewed  ra th er
th a n  h orizon ta l.( g )

Figure 16. The Cafe Wall illusion (a) is explained by a center-surround filtering (b). The
appearing tilt effect is exaggerated by +30° and -30° orientation filters (c, e). By
thresholding these outputs we demonstrate the perceived illusion. On the enlarged
inserts (g) the largest values indicates the existence of skewed lines in the particular
positions. (d) and (f) demonstrate that different orientations observed in different
positions according to the observed illusion.

If we use the next simple template:

B11

01 01 01
01 0 8 01
01 01 01

=
− − −
− −
− − −

�
�
�

�
�
�

. . .

. . .

. . .
(13)

we can generate a representation (Figure 16b) of the visual stimulus (input image), which show
some orientation tilt in that particular direction the illusion can be perceived. The template size
and the applied template values were chosen for the simplest but good representation of the
phenomenon and were robust in a wide parameter range. For the further exaggeration of this tilt
effect we used +30° and -30° orientation filters and an appropriate threshold, which assumed to
be present in the mammalian cortex as well. The used CNN templates were the followings:
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    A12

01 01 01 01 0 2
01 01 01 0 2 0 2

0 2 0 2 0 2 0 2 0 2
0 2 0 2 01 01 01
0 2 01 01 01 01

=

− − − − −
− − −

− − −
− − − − −

�
�
�
�
�
�

�
�
�
�
�
�

. . . . .

. . . . .
. . . . .
. . . . .
. . . . .

        A14

0 2 01 01 01 01
0 2 0 2 01 01 01
0 2 0 2 0 2 0 2 0 2
01 01 01 0 2 0 2
01 01 01 01 0 2

=

− − − − −
− − −

− − −
− − − − −

�
�
�
�
�
�

�
�
�
�
�
�

. . . . .
. . . . .
. . . . .
. . . . .
. . . . .

(14)

A
if y
if y23

1 0 48
1 0 48

=
≥

− <
.
.

      A
if y
if y45

1 0 48
1 0 48

=
≥

− <
�
�

.

.
(15)

The achieved results of the CNN model can be seen on Figure 16.

7.4  Distortion illusions
The Poggendorff illusion (Figure 17a,) is an old and still not totally understood illusion [15]. It
has close relationship to the Zöllner, the Herring and the Twisted cord illusions (Figure 17b,c,d).
There can be seen perceptual displacement of the oblique line in it. In the case of the Zöllner and
Herring illusion one can observe deformation and divergence of the otherwise parallel lines. The
twisted cord illusion pretends that the parallel cords are not straight as they really are. These
illusions belong to the group of distortion illusions. There are several theories, which try to
explain the underlying mechanisms of these illusions. We gave a reasonable model of Zöllner
illusion earlier(!!!) in this paper. One supposed that common mechanisms are the exaggeration of
the acute angles and minimization of the obtuse angles within the image. It is assumed, that the
cortical lateral inhibition can produce corresponding effects [15]. That is, every orientation
column is inhibiting the neighboring columns within the cortex and these interacting neighbors
has usually resembling orientation preferences.
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(c) (d)

Figure 17. Different illusions, which can be explained by angular displacement theory. The
Poggendorff (a), Herring (b),  Zöllner (c) and the  Twisted cord illusions (d).
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(ez itt a Wundt, de lehetunk udvariasak is mert igen igen hasonlit a Herringre. Lehet hogy azt
is annak nevezik, Nem hinnem hogy a kep kene, de megemlithetjuk mint hasonlot…)
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However, in the case of Poggendorff illusion, there is considerable deviation from this rule, if
we use a slightly different experimental condition. If we depict only the obtuse angles then we
can still observe the illusion (Figure 18a). But in that situation, when only the acute angles are
delineated exceptionally, the perceived illusion declines or even seems to disappear
(Figure 18b,).

             
(a)                                                (b)

Figure 18. Special variants of the Poggendorff illusion. The illusion can be still perceived if all
acute angles are erased (a), but decreases or disappears if the obtuse angles are
eliminated (b).

We can not find such a strange behavior in case of the other mentioned illusions. How can be
explained thisdeviation from the otherwise suitable explanation? We presumed, that there has to
be another phenomenon which can deteriorate the otherwise existing acute angle expansion. This
can be the apparent, illusory shift of the position of the acute angles. If there exists such a
phenomenon within the human visual information processing, then the other mentioned types of
illusions will not be sensitive for this kind of shifts. On Figure 19 we demonstrate that there
exists such a phenomenon. We can perceive that the tip positions alter depending on the
acuteness of the different angles.
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Figure 19. This image demonstrates, that one can perceive illusory shift in the tip position of
different angles.

What type of mechanism causes the illusory shift of the  acute angle’s position, but does not
change considerably the position of the obtuse angles and intersecting lines? If we use the next
simple CNN template:

                           B11

1 1 1
05 05 05

1 1 1
=

− − −

− − −

�
�
�

�
�
�

. . .       A
if y
if y12

1 0 3
0 0 3

=
≥
<

.

.
         B12 1= − (16)

which is an orientation endpoint filter, we can detect the endpoints of the horizontal lines
(Figure 20 b1). Apparently there is a slight overestimation or shift at the end position in case of
acute angles (Figure 20 b2), but there is no identified endpoints neither at obtuse angles nor on
the composite angle figures (Figure 20 b1, b3).

              
(a)                                                (b)

 Figure 20.  The CNN model of a special horizontal endpoint detection. The input can be seen on
(a) and the result on (b) inserts. It can detect the endpoints of the acute angles (2)
but it is not able to detect the obtuse angles (3) and the cross sections (1). By a
distracting element (a(4)) this detector can be deceived (b(4)).

This way a simple orientation-endpoint filter can corrupt the effects of angle extensions. For
validation of the existence of such a mechanism we changed slightly the experimental conditions.
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2
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We draw additional points nearby to the acute angles. This modification distract horizontal
endpoint detector (Figure 20, b4), therefore thedeterioration decrease and the Poggendorff
illusion hopefully appears again. On (Figure 21,) we can compare the effects of the modified and
the original stimuli.

(a)                                (b)

Figure 21. The effects of  distracting elements on the strength of the Poggendorff illusion. There
can be perceive a small displacement increase between parallel lines (b) compared
observable to (a).

This suggested extension of the angular displacement theory can give explanation for the
majority of the variations Poggendorff illusions. However, further scrutinized psychological
experiments are necessary to verify our proposed explanation of this problem.

7.5 Face-vase illusion
Figure 22a shows the face-vase illusion. If the initial fixation point is inside the contour, we see a
vase, otherwise we see two faces.

If we cannot decide exactly at once on an ambiguous scene which is the object, and which is
the background, our brain will suppose that the fixation point is on the object. This happens here,
if we look first at inside the vase, we will see a vase, and when we look first at one of the face,
we will see the faces.

Our phenomenological model for this illusion contains a single layer CNN, having the
following propagation type template:

A B I= �
�

�
�

= −
�

�

�
�

�
�
�

=
0 1 0
1 2 1
0 1 0

0 0 0
0 5 0
0 0 0

0,    ,      (17)

If we consider our initial fixation point as a black spot in the initial state of the CNN, and put
the original image (Figure 22a) to the input, the face or the vase will be extracted on the output of
the CNN respectively. Figure 22 shows the effect.
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(a) (b) (c)

(d) (e)
Figure 22. The face-vase illusion. (a): original image; (b) the fixation point is in the face area,

(c) and the output of the CNN (c). The vase is extracted. If the initial fixation point is
in the vase area (d), the vase is extracted (e).

7.6 Sculpture illusion1
The sculpture illusion (Salvador Dali’s painting)can be seen in Figure 23a. After watching the
image for a while, Voltaire’s sculpture will suddenly appear.

There is a hidden sculpture in the center of the image, which can be considered as background
at the first quick look (Figure 23a). It has the same grayness than the other background objects in
that area. After watching the image for a while, our brain will segment the image by grayness,
and analyze the shape and the structure of the groups of patches having the same gray level. In
this way after a while, our brain will reconstruct and recognize Voltaire’s sculpture.

   

(a) (b)
Figure 23. The sculpture illusion. The original input image (a), and the result (b).
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We made a phenomenological CNN model for this illusion. The model contains a single layer
CNN which segments the image by grayness by using the following CNN template:

A B I= �
�

�
�

=
�

�

�
�

�
�
�

=
0 0 5 0

0 5 4 0 5
0 0 5 0

0 5 0 5 0 5
0 5 1 0 5
0 5 0 5 0 5

35
.

. .
.

,
. . .
. .
. . .

, .      (18)

The input and the initial state can be seen in Figure 23a and the output of the CNN is in
Figure 23b. In the output image, the sculpture is obviously visible.

8. Conclusion

Different types of visual pathway CNN models were introduced in this paper. Some of them
modeled the human color perception, others explained the appearance of the visual illusions.
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